These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 1447146)
21. Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis. Veselý M; Knoppová M; Nesvera J; Pátek M Appl Microbiol Biotechnol; 2007 Aug; 76(1):159-68. PubMed ID: 17483937 [TBL] [Abstract][Full Text] [Related]
22. CatM regulation of the benABCDE operon: functional divergence of two LysR-type paralogs in Acinetobacter baylyi ADP1. Ezezika OC; Collier-Hyams LS; Dale HA; Burk AC; Neidle EL Appl Environ Microbiol; 2006 Mar; 72(3):1749-58. PubMed ID: 16517618 [TBL] [Abstract][Full Text] [Related]
23. Regulation by two CatR proteins that differ in binding affinity to catB promoters expressing two cat gene clusters. Takashima A; Murakami S; Takenaka S; Aoki K Biosci Biotechnol Biochem; 2001 Oct; 65(10):2146-53. PubMed ID: 11758902 [TBL] [Abstract][Full Text] [Related]
24. Mutations in catB, the gene encoding muconate cycloisomerase, activate transcription of the distal ben genes and contribute to a complex regulatory circuit in Acinetobacter sp. strain ADP1. Cosper NJ; Collier LS; Clark TJ; Scott RA; Neidle EL J Bacteriol; 2000 Dec; 182(24):7044-52. PubMed ID: 11092867 [TBL] [Abstract][Full Text] [Related]
25. Cross talk between catabolic pathways in Pseudomonas putida: XylS-dependent and -independent activation of the TOL meta operon requires the same cis-acting sequences within the Pm promoter. Kessler B; Marqués S; Köhler T; Ramos JL; Timmis KN; de Lorenzo V J Bacteriol; 1994 Sep; 176(17):5578-82. PubMed ID: 8071244 [TBL] [Abstract][Full Text] [Related]
26. TfdR, the LysR-type transcriptional activator, is responsible for the activation of the tfdCB operon of Pseudomonas putida 2, 4-dichlorophenoxyacetic acid degradative plasmid pEST4011. Vedler E; Kõiv V; Heinaru A Gene; 2000 Mar; 245(1):161-8. PubMed ID: 10713456 [TBL] [Abstract][Full Text] [Related]
27. DNase I footprinting, DNA bending and in vitro transcription analyses of ClcR and CatR interactions with the clcABD promoter: evidence of a conserved transcriptional activation mechanism. McFall SM; Klem TJ; Fujita N; Ishihama A; Chakrabarty AM Mol Microbiol; 1997 Jun; 24(5):965-76. PubMed ID: 9220004 [TBL] [Abstract][Full Text] [Related]
28. Substrate specificity of and product formation by muconate cycloisomerases: an analysis of wild-type enzymes and engineered variants. Vollmer MD; Hoier H; Hecht HJ; Schell U; Gröning J; Goldman A; Schlömann M Appl Environ Microbiol; 1998 Sep; 64(9):3290-9. PubMed ID: 9726873 [TBL] [Abstract][Full Text] [Related]
29. Expression of the TOL plasmid xylS gene in Pseudomonas putida occurs from a alpha 70-dependent promoter or from alpha 70- and alpha 54-dependent tandem promoters according to the compound used for growth. Gallegos MT; Marqués S; Ramos JL J Bacteriol; 1996 Apr; 178(8):2356-61. PubMed ID: 8636038 [TBL] [Abstract][Full Text] [Related]
30. Discontinuities in the evolution of Pseudomonas putida cat genes. Houghton JE; Brown TM; Appel AJ; Hughes EJ; Ornston LN J Bacteriol; 1995 Jan; 177(2):401-12. PubMed ID: 7814330 [TBL] [Abstract][Full Text] [Related]
31. Regulation of benzoate degradation in Acinetobacter sp. strain ADP1 by BenM, a LysR-type transcriptional activator. Collier LS; Gaines GL; Neidle EL J Bacteriol; 1998 May; 180(9):2493-501. PubMed ID: 9573203 [TBL] [Abstract][Full Text] [Related]
32. Benzoate decreases the binding of cis,cis-muconate to the BenM regulator despite the synergistic effect of both compounds on transcriptional activation. Clark TJ; Phillips RS; Bundy BM; Momany C; Neidle EL J Bacteriol; 2004 Feb; 186(4):1200-4. PubMed ID: 14762017 [TBL] [Abstract][Full Text] [Related]
33. Protein binding in vivo to OP2 promoter of the Pseudomonas putida TOL plasmid. Miura K; Inouye S; Nakazawa A Biochem Mol Biol Int; 1998 Dec; 46(5):933-41. PubMed ID: 9861447 [TBL] [Abstract][Full Text] [Related]
34. BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida. Cowles CE; Nichols NN; Harwood CS J Bacteriol; 2000 Nov; 182(22):6339-46. PubMed ID: 11053377 [TBL] [Abstract][Full Text] [Related]
35. Distinct effector-binding sites enable synergistic transcriptional activation by BenM, a LysR-type regulator. Ezezika OC; Haddad S; Clark TJ; Neidle EL; Momany C J Mol Biol; 2007 Mar; 367(3):616-29. PubMed ID: 17291527 [TBL] [Abstract][Full Text] [Related]
36. Transcription of the cam operon and camR genes in Pseudomonas putida PpG1. Fujita M; Aramaki H; Horiuchi T; Amemura A J Bacteriol; 1993 Nov; 175(21):6953-8. PubMed ID: 7693653 [TBL] [Abstract][Full Text] [Related]
37. In vitro transcriptional studies of the bkd operon of Pseudomonas putida: L-branched-chain amino acids and D-leucine are the inducers. Madhusudhan KT; Luo J; Sokatch JR J Bacteriol; 1999 May; 181(9):2889-94. PubMed ID: 10217783 [TBL] [Abstract][Full Text] [Related]
38. Characterization of BkdR-DNA binding in the expression of the bkd operon of Pseudomonas putida. Madhusudhan KT; Huang N; Sokatch JR J Bacteriol; 1995 Feb; 177(3):636-41. PubMed ID: 7836297 [TBL] [Abstract][Full Text] [Related]
39. Nucleotide sequence and initial functional characterization of the clcR gene encoding a LysR family activator of the clcABD chlorocatechol operon in Pseudomonas putida. Coco WM; Rothmel RK; Henikoff S; Chakrabarty AM J Bacteriol; 1993 Jan; 175(2):417-27. PubMed ID: 8419291 [TBL] [Abstract][Full Text] [Related]
40. Transcriptional control of the multiple catabolic pathways encoded on the TOL plasmid pWW53 of Pseudomonas putida MT53. Gallegos MT; Williams PA; Ramos JL J Bacteriol; 1997 Aug; 179(16):5024-9. PubMed ID: 9260942 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]