These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 1447169)

  • 1. Analysis of the perturbation of phospholipid model membranes by rhodanese and its presequence.
    Zardeneta G; Horowitz PM
    J Biol Chem; 1992 Dec; 267(34):24193-8. PubMed ID: 1447169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partially folded rhodanese or its N-terminal sequence can disrupt phospholipid vesicles.
    Mendoza JA; Grant E; Horowitz PM
    J Protein Chem; 1993 Feb; 12(1):65-9. PubMed ID: 8427635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical characterization of a reactivatable liposome-bound rhodanese folding intermediate.
    Zardeneta G; Horowitz PM
    Biochemistry; 1993 Dec; 32(50):13941-8. PubMed ID: 8268170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiolipin liposomes sequester a reactivatable partially folded rhodanese intermediate.
    Zardeneta G; Horowitz PM
    Eur J Biochem; 1992 Dec; 210(3):831-7. PubMed ID: 1483467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micelle-assisted protein folding. Denatured rhodanese binding to cardiolipin-containing lauryl maltoside micelles results in slower refolding kinetics but greater enzyme reactivation.
    Zardeneta G; Horowitz PM
    J Biol Chem; 1992 Mar; 267(9):5811-6. PubMed ID: 1556097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sulfurtransferase activity and structure of rhodanese are affected by site-directed replacement of Arg-186 or Lys-249.
    Luo GX; Horowitz PM
    J Biol Chem; 1994 Mar; 269(11):8220-5. PubMed ID: 8132546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amphiphilicity determines binding properties of three mitochondrial presequences to lipid surfaces.
    Hammen PK; Gorenstein DG; Weiner H
    Biochemistry; 1996 Mar; 35(12):3772-81. PubMed ID: 8619998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The chaperonin assisted and unassisted refolding of rhodanese can be modulated by its N-terminal peptide.
    Mendoza JA; Horowitz PM
    J Protein Chem; 1994 Jan; 13(1):15-22. PubMed ID: 8011067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alteration around the active site of rhodanese during urea-induced denaturation and its implications for folding.
    Bhattacharyya AM; Horowitz P
    J Biol Chem; 2000 May; 275(20):14860-4. PubMed ID: 10809729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The folding and stability of rhodanese are influenced by the replacement of glutamic acid 17 in the NH2-terminal helix by proline but not by glutamine.
    Luo GX; Horowitz PM
    J Biol Chem; 1993 May; 268(14):10246-51. PubMed ID: 8098037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NH2-terminal sequence truncation decreases the stability of bovine rhodanese, minimally perturbs its crystal structure, and enhances interaction with GroEL under native conditions.
    Trevino RJ; Gliubich F; Berni R; Cianci M; Chirgwin JM; Zanotti G; Horowitz PM
    J Biol Chem; 1999 May; 274(20):13938-47. PubMed ID: 10318804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodanese can partially refold in its GroEL-GroES-ADP complex and can be released to give a homogeneous product.
    Bhattacharyya AM; Horowitz PM
    Biochemistry; 2002 Feb; 41(7):2421-8. PubMed ID: 11841236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limited tryptic digestion near the amino terminus of bovine liver rhodanese produces active electrophoretic variants with altered refolding.
    Merrill GA; Butler M; Horowitz PM
    J Biol Chem; 1993 Jul; 268(21):15611-20. PubMed ID: 8340386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a stable, reactivatable complex between chaperonin 60 and mitochondrial rhodanese.
    Mendoza JA; Butler MC; Horowitz PM
    J Biol Chem; 1992 Dec; 267(34):24648-54. PubMed ID: 1360012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodanese folding is controlled by the partitioning of its folding intermediates.
    Gorovits BM; McGee WA; Horowitz PM
    Biochim Biophys Acta; 1998 Jan; 1382(1):120-8. PubMed ID: 9507086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insertion and orientation of a synthetic peptide representing the C-terminus of the A1 domain of Shiga toxin into phospholipid membranes.
    Saleh MT; Ferguson J; Boggs JM; GariƩpy J
    Biochemistry; 1996 Jul; 35(29):9325-34. PubMed ID: 8755710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A chaperone-mimetic effect of serum albumin on rhodanese.
    Jarabak R; Westley J; Dungan JM; Horowitz P
    J Biochem Toxicol; 1993 Mar; 8(1):41-8. PubMed ID: 8492302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding.
    Smith KE; Fisher MT
    J Biol Chem; 1995 Sep; 270(37):21517-23. PubMed ID: 7665563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of N-terminal fragments of groups I and II phospholipases A2 with phospholipid bilayers and their surface recognition properties.
    Kato T; Lee S; Oishi O; Aoyagi H; Ohno M
    Biochim Biophys Acta; 1994 Mar; 1211(2):215-20. PubMed ID: 8117749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR analysis of the binding of a rhodanese peptide to a minichaperone in solution.
    Kobayashi N; Freund SM; Chatellier J; Zahn R; Fersht AR
    J Mol Biol; 1999 Sep; 292(1):181-90. PubMed ID: 10493867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.