These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 14475660)
1. Nonspecific responses of reptilian cortex to sensory stimuli. MOORE GP; TSCHIRGI RD Exp Neurol; 1962 Mar; 5():196-209. PubMed ID: 14475660 [No Abstract] [Full Text] [Related]
2. [On certain mechanisms of generalized reactions in the electrogram of the cortex in reptiles]. GUSEL'NIKOV VI Fiziol Zh SSSR Im I M Sechenova; 1960 May; 46():537-43. PubMed ID: 13830400 [No Abstract] [Full Text] [Related]
3. [Studies on reptiles on the effect of diencephalic stimuli on the rhythmus of the cerebral cortex with special reference to thalamus]. WINKEL K; CASPERS H Pflugers Arch Gesamte Physiol Menschen Tiere; 1953; 258(1):22-37. PubMed ID: 13145260 [No Abstract] [Full Text] [Related]
4. Overview of the main and accessory olfactory bulb projections in reptiles. Lohman AH; Smeets WJ Brain Behav Evol; 1993; 41(3-5):147-55. PubMed ID: 8477339 [TBL] [Abstract][Full Text] [Related]
5. Evolutionary origins of the reptilian brain: the question of putative homologues of dorsal ventricular ridge. An overview and proposal. Aboitiz F Biol Res; 1995; 28(3):187-96. PubMed ID: 9251748 [TBL] [Abstract][Full Text] [Related]
6. Circulation in the reptilian heart (Squamata). WHITE FN Anat Rec; 1959 Oct; 135():129-34. PubMed ID: 13844346 [No Abstract] [Full Text] [Related]
7. Electroencephalographic activity of caimans as related to diving. Verlander JM; Huggins SE Electroencephalogr Clin Neurophysiol; 1974 Nov; 37(5):491-9. PubMed ID: 4138874 [No Abstract] [Full Text] [Related]
8. Nature and distribution of neurosecretory cells of the reptilian brain. ANANTHANARAYANAN V Z Zellforsch Mikrosk Anat; 1955; 43(1):8-16. PubMed ID: 13300729 [No Abstract] [Full Text] [Related]
9. The limbic system of tetrapods: a comparative analysis of cortical and amygdalar populations. Bruce LL; Neary TJ Brain Behav Evol; 1995; 46(4-5):224-34. PubMed ID: 8564465 [TBL] [Abstract][Full Text] [Related]
10. Homology in the evolution of the cerebral hemispheres. The case of reptilian dorsal ventricular ridge and its possible correspondence with mammalian neocortex. Aboitiz F J Hirnforsch; 1995; 36(4):461-72. PubMed ID: 8568216 [TBL] [Abstract][Full Text] [Related]
11. Electrocorticograms of hippocampal and dorsal cortex of two reptiles: comparison with possible mammalian homologs. Gaztelu JM; GarcĂa-Austt E; Bullock TH Brain Behav Evol; 1991; 37(3):144-60. PubMed ID: 2070255 [TBL] [Abstract][Full Text] [Related]
12. Cytochemical, biochemical and molecular aspects of the process of keratinization in the epidermis of reptilian scales. Alibardi L; Toni M Prog Histochem Cytochem; 2006; 40(2):73-134. PubMed ID: 16584938 [TBL] [Abstract][Full Text] [Related]
14. Correlations between background electrical activity after-discharge and EEG activation response to photic stimulation in tortoise brain (Emys lutaria). Belekhova MG; Zagorul'ko TM Fed Proc Transl Suppl; 1965; 24(6):1028-32. PubMed ID: 5215169 [No Abstract] [Full Text] [Related]
15. Cutaneous water loss in reptiles. Bentley PJ; Schmidt-Nielsen K Science; 1966 Mar; 151(3717):1547-9. PubMed ID: 5909589 [TBL] [Abstract][Full Text] [Related]
16. On the Value of Reptilian Brains to Map the Evolution of the Hippocampal Formation. Reiter S; Liaw HP; Yamawaki TM; Naumann RK; Laurent G Brain Behav Evol; 2017; 90(1):41-52. PubMed ID: 28866680 [TBL] [Abstract][Full Text] [Related]
17. Reptilian neurology: anatomy and function. Wyneken J Vet Clin North Am Exot Anim Pract; 2007 Sep; 10(3):837-53, vi. PubMed ID: 17765850 [TBL] [Abstract][Full Text] [Related]
18. Anatomical influences on internally coupled ears in reptiles. Young BA Biol Cybern; 2016 Oct; 110(4-5):255-261. PubMed ID: 27699482 [TBL] [Abstract][Full Text] [Related]