These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 1447795)

  • 1. Protein folding within the cell is influenced by controlled rates of polypeptide elongation.
    Crombie T; Swaffield JC; Brown AJ
    J Mol Biol; 1992 Nov; 228(1):7-12. PubMed ID: 1447795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The folding of the bifunctional TRP3 protein in yeast is influenced by a translational pause which lies in a region of structural divergence with Escherichia coli indoleglycerol-phosphate synthase.
    Crombie T; Boyle JP; Coggins JR; Brown AJ
    Eur J Biochem; 1994 Dec; 226(2):657-64. PubMed ID: 8001582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide sequence of Saccharomyces cerevisiae genes TRP2 and TRP3 encoding bifunctional anthranilate synthase: indole-3-glycerol phosphate synthase.
    Zalkin H; Paluh JL; van Cleemput M; Moye WS; Yanofsky C
    J Biol Chem; 1984 Mar; 259(6):3985-92. PubMed ID: 6323449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of Saccharomyces cerevisiae TRP3.
    Paluh JL; Zalkin H
    J Bacteriol; 1983 Jan; 153(1):345-9. PubMed ID: 6294052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the TRP1 gene in yeast tryptophan biosynthesis.
    Braus GH; Luger K; Paravicini G; Schmidheini T; Kirschner K; Hütter R
    J Biol Chem; 1988 Jun; 263(16):7868-75. PubMed ID: 3286643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of feedback-resistant anthranilate synthases from Saccharomyces cerevisiae.
    Graf R; Mehmann B; Braus GH
    J Bacteriol; 1993 Feb; 175(4):1061-8. PubMed ID: 8432699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A counterselection for the tryptophan pathway in yeast: 5-fluoroanthranilic acid resistance.
    Toyn JH; Gunyuzlu PL; White WH; Thompson LA; Hollis GF
    Yeast; 2000 Apr; 16(6):553-60. PubMed ID: 10790693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of leader primary structure on the translational efficiency of phosphoglycerate kinase mRNA in yeast.
    van den Heuvel JJ; Planta RJ; Raué HA
    Yeast; 1990; 6(6):473-82. PubMed ID: 2080664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tryptophan accumulation in Saccharomyces cerevisiae under the influence of an artificial yeast TRP gene cluster.
    Prasad R; Niederberger P; Hütter R
    Yeast; 1987 Jun; 3(2):95-105. PubMed ID: 3332969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The yeast pyruvate kinase gene does not contain a string of non-preferred codons: revised nucleotide sequence.
    McNally T; Purvis IJ; Fothergill-Gilmore LA; Brown AJ
    FEBS Lett; 1989 Apr; 247(2):312-6. PubMed ID: 2653861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterization of the indole-3-glycerolphosphate synthase/anthranilate synthase complex of Saccharomyces cerevisiae.
    Prantl F; Strasser A; Aebi M; Furter R; Niederberger P; Kirschner K; Huetter R
    Eur J Biochem; 1985 Jan; 146(1):95-100. PubMed ID: 3881257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translation elongation factor 1 functions in the yeast Saccharomyces cerevisiae.
    Anand M; Valente L; Carr-Schmid A; Munshi R; Olarewaju O; Ortiz PA; Kinzy TG
    Cold Spring Harb Symp Quant Biol; 2001; 66():439-48. PubMed ID: 12762046
    [No Abstract]   [Full Text] [Related]  

  • 13. Candida albicans TDH3 gene promotes secretion of internal invertase when expressed in Saccharomyces cerevisiae as a glyceraldehyde-3-phosphate dehydrogenase-invertase fusion protein.
    Delgado ML; Gil ML; Gozalbo D
    Yeast; 2003 Jun; 20(8):713-22. PubMed ID: 12794932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correct targeting of a vacuolar tobacco chitinase in Saccharomyces cerevisiae--post-translational modifications are dependent on the host strain.
    Kunze I; Nilsson C; Adler K; Manteuffel R; Horstmann C; Bröker M; Kunze G
    Biochim Biophys Acta; 1998 Feb; 1395(3):329-44. PubMed ID: 9512669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and sequence of the gene encoding ornithine decarboxylase, SPE1, from Candida albicans by complementation of a spe1 delta strain of Saccharomyces cerevisiae.
    McNemar MD; Gorman JA; Buckley HR
    Yeast; 1997 Nov; 13(14):1383-9. PubMed ID: 9392083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. A hypothesis.
    Purvis IJ; Bettany AJ; Santiago TC; Coggins JR; Duncan K; Eason R; Brown AJ
    J Mol Biol; 1987 Jan; 193(2):413-7. PubMed ID: 3298659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arrangement of genes TRP1 and TRP3 of Saccharomyces cerevisiae strains.
    Braus G; Furter R; Prantl F; Niederberger P; Hütter R
    Arch Microbiol; 1985 Sep; 142(4):383-8. PubMed ID: 2998296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The "+70 pause": hypothesis of a translational control of membrane protein assembly.
    Képès F
    J Mol Biol; 1996 Sep; 262(2):77-86. PubMed ID: 8831781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two anthranilate synthase genes in Arabidopsis: defense-related regulation of the tryptophan pathway.
    Niyogi KK; Fink GR
    Plant Cell; 1992 Jun; 4(6):721-33. PubMed ID: 1392592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based in vitro engineering of the anthranilate synthase, a metabolic key enzyme in the plant tryptophan pathway.
    Kanno T; Komatsu A; Kasai K; Dubouzet JG; Sakurai M; Ikejiri-Kanno Y; Wakasa K; Tozawa Y
    Plant Physiol; 2005 Aug; 138(4):2260-8. PubMed ID: 16040654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.