BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 14486152)

  • 21. Evaluation of individual variability in the composition of Agkistrodon contortrix contortrix venom by means of HPLC and two-dimensional PAGE.
    Suttnar J; Dyr JE; Kornalík F
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1988; 115(1-2):197-202. PubMed ID: 2459020
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Separation of the bradykinin releasing enzyme from the clotting factor in venom from Bothrops jararaca.
    RAUDONAT HW; ROCHA E SILVA M
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1962; 243():232-6. PubMed ID: 14490579
    [No Abstract]   [Full Text] [Related]  

  • 23. Immunology. Mast cells defang snake and bee venom.
    Marx J
    Science; 2006 Jul; 313(5786):427. PubMed ID: 16873620
    [No Abstract]   [Full Text] [Related]  

  • 24. The purification of renin by use of ion-exchange chromatography.
    PASSANANTI GT
    Biochim Biophys Acta; 1959 Jul; 34():246-8. PubMed ID: 14430736
    [No Abstract]   [Full Text] [Related]  

  • 25. Chromogenic proteinase substrates as possible tools in the characterization of Crotalidae and Viperidae snake venoms.
    Meier J; Stocker K; Svendsen LG; Brogli M
    Toxicon; 1985; 23(3):393-7. PubMed ID: 3895582
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Further studies on the purification of the blood-clotting enzyme from the venom of Bothrops iararaca.
    FICHMAN M; HENRIQUES OB
    Arch Biochem Biophys; 1962 Jul; 98():95-9. PubMed ID: 13892723
    [No Abstract]   [Full Text] [Related]  

  • 27. Enzymatic digestion of human plasma inter-alpha-trypsin inhibitor by snake venom metalloproteinases.
    Catanese JJ; Kress LF
    Comp Biochem Physiol B; 1985; 80(3):507-12. PubMed ID: 2408815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Snake venom NAD nucleosidase: its occurrence in the venoms from the genus Agkistrodon and purification and properties of the enzyme from the venom of A. halys blomhoffii.
    Tatsuki T; Iwanaga S; Oshima G; Suzuki T
    Toxicon; 1975 Aug; 13(4):211-20. PubMed ID: 241134
    [No Abstract]   [Full Text] [Related]  

  • 29. The effects of hybridization on divergent venom phenotypes: Characterization of venom from Crotalus scutulatus scutulatus × Crotalus oreganus helleri hybrids.
    Smith CF; Mackessy SP
    Toxicon; 2016 Sep; 120():110-23. PubMed ID: 27496060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Affinity chromatography of phosphodiesterase from snake venom.
    Eckstein F; Frischauf AM
    Methods Enzymol; 1974; 34():605-10. PubMed ID: 4375241
    [No Abstract]   [Full Text] [Related]  

  • 31. The chromatographic separation of phosphatases in snake venoms.
    HURST RO; BUTLER GC
    J Biol Chem; 1951 Nov; 193(1):91-6. PubMed ID: 14907693
    [No Abstract]   [Full Text] [Related]  

  • 32. Venom Ontogeny in the Mexican Lance-Headed Rattlesnake (
    Mackessy SP; Leroy J; Mociño-Deloya E; Setser K; Bryson RW; Saviola AJ
    Toxins (Basel); 2018 Jul; 10(7):. PubMed ID: 29970805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Separation of ficin components by curtain electrophoresis.
    MESSING RA; VAN NESS WP
    Enzymologia; 1961 Nov; 23():373-9. PubMed ID: 14472981
    [No Abstract]   [Full Text] [Related]  

  • 34. Mast cells can enhance resistance to snake and honeybee venoms.
    Metz M; Piliponsky AM; Chen CC; Lammel V; Abrink M; Pejler G; Tsai M; Galli SJ
    Science; 2006 Jul; 313(5786):526-30. PubMed ID: 16873664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural and functional comparison of proteolytic enzymes from plant latex and snake venoms.
    Costa Jde O; Fonseca KC; Garrote-Filho MS; Cunha CC; de Freitas MV; Silva HS; Araújo RB; Penha-Silva N; de Oliveira F
    Biochimie; 2010 Dec; 92(12):1760-5. PubMed ID: 20868725
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Snake venom proteinases as tools in hemostasis studies: structure-function relationship of a plasminogen activator purified from Trimeresurus stejnegeri venom.
    Wisner A; Braud S; Bon C
    Haemostasis; 2001; 31(3-6):133-40. PubMed ID: 11910178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fibrinolytic and coagulant activities of certain snake venoms and proteases.
    DIDISHEIM P; LEWIS JH
    Proc Soc Exp Biol Med; 1956 Oct; 93(1):10-3. PubMed ID: 13370561
    [No Abstract]   [Full Text] [Related]  

  • 38. Isolation of a crotalase-like protease with alpha-fibrinogenase activity from the western diamondback rattlesnake, Crotalus atrox.
    Chiou SH; Hung CC; Lin CW
    Biochem Int; 1992 Feb; 26(1):105-12. PubMed ID: 1616487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studies on Habu snake venom. (V). Myolysis caused by phospholipase A in Habu snake venom.
    MAENO H; MITSUHASHI S; OKONOGI T; HOSHI S; HOMMA M
    Jpn J Exp Med; 1962 Feb; 32():55-64. PubMed ID: 14468184
    [No Abstract]   [Full Text] [Related]  

  • 40. [Proteases of snake venoms. Influence of chemical agents on the proteolytic activity of Lachesis muta Shushupe venom].
    Morante Y; Yarlequé A
    Acta Cient Venez; 1980; 31(2):148-53. PubMed ID: 7008477
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.