BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 14486152)

  • 41. Isolation and characterization of the thrombin-like enzyme from Cryptelytrops purpureomaculatus venom.
    Tan NH
    Comp Biochem Physiol C Toxicol Pharmacol; 2010 Jan; 151(1):131-6. PubMed ID: 19770070
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vitro comparison of enzymatic effects among Brazilian Bothrops spp. venoms.
    Campos LB; Pucca MB; Roncolato EC; Bertolini TB; Netto JC; Barbosa JE
    Toxicon; 2013 Dec; 76():1-10. PubMed ID: 23998940
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neuromuscular action of venom from the South American colubrid snake Philodryas patagoniensis.
    Carreiro da Costa RS; Prudêncio L; Ferrari EF; Souza GH; de Mello SM; Prianti Júnior AC; Ribeiro W; Zamunér SR; Hyslop S; Cogo JC
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Jul; 148(1):31-8. PubMed ID: 18455482
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The action of venom and proteolytic enzymes on the non-specific inhibitor of hyaluronidase.
    HADIDIAN Z
    J Gen Physiol; 1953 Jan; 36(3):361-9. PubMed ID: 13022932
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America.
    Calvete JJ; Sanz L; Cid P; de la Torre P; Flores-Díaz M; Dos Santos MC; Borges A; Bremo A; Angulo Y; Lomonte B; Alape-Girón A; Gutiérrez JM
    J Proteome Res; 2010 Jan; 9(1):528-44. PubMed ID: 19863078
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Studies on the snake venom enzyme. XIII. On the ribonuclease activity of Formosan snake venoms].
    TSAI FT
    Fukuoka Igaku Zasshi; 1961 Jan; 52():47-51. PubMed ID: 13778318
    [No Abstract]   [Full Text] [Related]  

  • 47. Proteinases from the venom of Agkistrodon halys blomhoffi.
    Iwanaga S; Oshima G; Suzuki T
    Methods Enzymol; 1976; 45():459-68. PubMed ID: 1012009
    [No Abstract]   [Full Text] [Related]  

  • 48. INACTIVATION OF FRIEND VIRUS BY SNAKE VENOM.
    OKABE K; SUGIMURA T; KASUGA T
    Gan; 1964 Feb; 55():19-23. PubMed ID: 14133993
    [No Abstract]   [Full Text] [Related]  

  • 49. Isolation and characterization of two disintegrins inhibiting ADP-induced human platelet aggregation from the venom of Crotalus scutulatus scutulatus (Mohave Rattlesnake).
    Sánchez EE; Galán JA; Russell WK; Soto JG; Russell DH; Pérez JC
    Toxicol Appl Pharmacol; 2006 Apr; 212(1):59-68. PubMed ID: 16084550
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Serine proteinases from Bothrops snake venom activates PI3K/Akt mediated angiogenesis.
    Bhat SK; Joshi MB; Ullah A; Masood R; Biligiri SG; Arni RK; Satyamoorthy K
    Toxicon; 2016 Dec; 124():63-72. PubMed ID: 27816537
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [IMMUNOLOGICAL STUDIES ON SNAKE VENOM. I. COMPARISON OF VENOMS FROM GENUS TRIMERESURUS INHABITING THE RYUKYU ISLANDS].
    SADAHIRO S; YAMAUCHI K; KONDO S; KONDO H; MURATA R
    Nihon Saikingaku Zasshi; 1965 Jan; 20():21-6. PubMed ID: 14295690
    [No Abstract]   [Full Text] [Related]  

  • 52. Analysis of the Snake Venom Peptidome.
    Serrano SMT; Zelanis A; Miyamoto JG; Hayashi JY; Kitano ES; Tashima AK
    Methods Mol Biol; 2024; 2758():319-329. PubMed ID: 38549022
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Crotalid snake venom subproteomes unraveled by the antiophidic protein DM43.
    Rocha SL; Neves-Ferreira AG; Trugilho MR; Chapeaurouge A; León IR; Valente RH; Domont GB; Perales J
    J Proteome Res; 2009 May; 8(5):2351-60. PubMed ID: 19267469
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid screening and identification of ACE inhibitors in snake venoms using at-line nanofractionation LC-MS.
    Mladic M; de Waal T; Burggraaff L; Slagboom J; Somsen GW; Niessen WMA; Manjunatha Kini R; Kool J
    Anal Bioanal Chem; 2017 Oct; 409(25):5987-5997. PubMed ID: 28801827
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches.
    Calvete JJ; Fasoli E; Sanz L; Boschetti E; Righetti PG
    J Proteome Res; 2009 Jun; 8(6):3055-67. PubMed ID: 19371136
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Chemical studies of snake venom, VI. Composition of crotoxin].
    SLOTTA K; PRIMOSIGH J
    Mem Inst Butantan; 1950-1951; 23():51-61. PubMed ID: 14940675
    [No Abstract]   [Full Text] [Related]  

  • 57. Isolation, stabilization, and characterization of a toxin from timber rattlesnake venom.
    Sullivan J; Geren CR
    Prep Biochem; 1979; 9(3):321-33. PubMed ID: 471946
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Snake venom (Ancistrodon piscivorus) in the treatment of chronic urticaria.
    COHEN VL
    Ann Allergy; 1951; 9(2):173-83. PubMed ID: 14819842
    [No Abstract]   [Full Text] [Related]  

  • 59. The influence of snake venom enzymes on blood coagulation.
    Kornalík F
    Pharmacol Ther; 1985; 29(3):353-405. PubMed ID: 3915360
    [No Abstract]   [Full Text] [Related]  

  • 60. Separation of biologically active components from scorpion venoms by zone electrophoresis.
    DINIZ CR; GONCALVES JM
    Biochim Biophys Acta; 1960 Jul; 41():470-7. PubMed ID: 13816867
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.