These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 1448629)

  • 1. Enzyme electrophoretic polymorphism differentiates invasive from non-invasive Chlamydia psittaci ruminant isolates.
    Picard B; Denamur E; Souriau A; Orfila J; Rodolakis A; Goullet P
    Res Microbiol; 1992 Jun; 143(5):525-31. PubMed ID: 1448629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restriction pattern of the major outer-membrane protein gene provides evidence for a homogeneous invasive group among ruminant isolates of Chlamydia psittaci.
    Denamur E; Sayada C; Souriau A; Orfila J; Rodolakis A; Elion J
    J Gen Microbiol; 1991 Nov; 137(11):2525-30. PubMed ID: 1686054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antigenic diversity of ruminant Chlamydia psittaci strains demonstrated by the indirect microimmunofluorescence test with monoclonal antibodies.
    Salinas J; Souriau A; Cuello F; Rodolakis A
    Vet Microbiol; 1995 Feb; 43(2-3):219-26. PubMed ID: 7740760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Usefulness of omp1 restriction mapping for avian Chlamydia psittaci isolate differentiation.
    Sayada C; Andersen AA; Storey C; Milon A; Eb F; Hashimoto N; Hirai K; Elion J; Denamur E
    Res Microbiol; 1995 Feb; 146(2):155-65. PubMed ID: 7652209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AFLP allows the identification of genomic markers of ruminant Chlamydia psittaci strains useful for typing and epidemiological studies.
    Boumedine KS; Rodolakis A
    Res Microbiol; 1998; 149(10):735-44. PubMed ID: 9921580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between infectivity and cytopathology for L-929 cells, membrane proteins, and antigenicity of avian isolates of Chlamydia psittaci.
    Winsor DK; Grimes JE
    Avian Dis; 1988; 32(3):421-31. PubMed ID: 3196260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restriction endonuclease analysis of DNA from Chlamydia trachomatis biovars.
    Peterson EM; de la Maza LM
    J Clin Microbiol; 1988 Apr; 26(4):625-9. PubMed ID: 2835386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a new group of Chlamydia psittaci strains called TWAR.
    Kuo CC; Chen HH; Wang SP; Grayston JT
    J Clin Microbiol; 1986 Dec; 24(6):1034-7. PubMed ID: 3097063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the new Chlamydia agent, TWAR, as a unique organism by restriction endonuclease analysis and DNA-DNA hybridization.
    Campbell LA; Kuo CC; Grayston JT
    J Clin Microbiol; 1987 Oct; 25(10):1911-6. PubMed ID: 2822763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restriction endonuclease analysis of DNA from ruminant Chlamydia psittaci and its relation to mouse virulence.
    Rodolakis A; Souriau A
    Vet Microbiol; 1992 Jun; 31(2-3):263-71. PubMed ID: 1626375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary relationships among members of the genus Chlamydia based on 16S ribosomal DNA analysis.
    Pettersson B; Andersson A; Leitner T; Olsvik O; Uhlén M; Storey C; Black CM
    J Bacteriol; 1997 Jul; 179(13):4195-205. PubMed ID: 9209033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of protein patterns between invasive and non-invasive ovine strains of Chlamydia psittaci.
    Buzoni-Gatel D; Layachi K; Dubray G; Rodolakis A
    Res Vet Sci; 1989 Jan; 46(1):40-2. PubMed ID: 2922504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Chlamydia psittaci isolates by DNA restriction endonuclease analysis.
    McClenaghan M; Herring AJ; Aitken ID
    Infect Immun; 1984 Aug; 45(2):384-9. PubMed ID: 6086526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixed infections with porcine Chlamydia trachomatis/pecorum and infections with ruminant Chlamydia psittaci serovar 1 associated with abortions in swine.
    Schiller I; Koesters R; Weilenmann R; Thoma R; Kaltenboeck B; Heitz P; Pospischil A
    Vet Microbiol; 1997 Nov; 58(2-4):251-60. PubMed ID: 9453135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endotoxic activity and chemical structure of lipopolysaccharides from Chlamydia trachomatis serotypes E and L2 and Chlamydophila psittaci 6BC.
    Heine H; Müller-Loennies S; Brade L; Lindner B; Brade H
    Eur J Biochem; 2003 Feb; 270(3):440-50. PubMed ID: 12542694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Chlamydia DNA by restriction endonuclease cleavage.
    Peterson EM; de la Maza LM
    Infect Immun; 1983 Aug; 41(2):604-8. PubMed ID: 6307876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monoclonal antibodies against Chlamydia psittaci.
    Toyofuku H; Takashima I; Arikawa J; Hashimoto N
    Microbiol Immunol; 1986; 30(10):945-55. PubMed ID: 3025566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the virulence in mice of some ovine isolates of Chlamydia psittaci.
    Anderson IE
    Vet Microbiol; 1986 Sep; 12(3):213-20. PubMed ID: 3776092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific antigens of Chlamydia pecorum and their homologues in C psittaci and C trachomatis.
    Baghian A; Kousoulas K; Truax R; Storz J
    Am J Vet Res; 1996 Dec; 57(12):1720-5. PubMed ID: 8950425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Serotyping of "Chlamydia psittaci" by microimmunofluorescence test (author's transl)].
    Eb F; Orfila J
    Ann Microbiol (Paris); 1981; 132A(1):81-96. PubMed ID: 7020525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.