These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 14486850)

  • 21. [ON THE BEHAVIOR OF ASPARAGINIC ACID AND ALANINE IN CHLORELLA, STUDIED WITH OPTICAL TESTS].
    WARBURG O; KRIPPAHL G
    Biochem Z; 1964 Nov; 340():471-5. PubMed ID: 14331578
    [No Abstract]   [Full Text] [Related]  

  • 22. [Dynamics of the development of bacterial microflora during the cultivation of Chlorella].
    VLADIMIROVA MG
    Mikrobiologiia; 1961; 30():431-5. PubMed ID: 13781724
    [No Abstract]   [Full Text] [Related]  

  • 23. HETEROTROPHIC GROWTH AND PRODUCTION OF XANTHOPHYLLS BY CHLORELLA PYRENOIDOSA.
    THERIAULT RJ
    Appl Microbiol; 1965 May; 13(3):402-16. PubMed ID: 14325281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of oxygen on the reduction of CO2 to glycolic acid and other products during photosynthesis by Chlorella.
    BASSHAM JA; KIRK M
    Biochem Biophys Res Commun; 1962 Nov; 9():376-80. PubMed ID: 13969890
    [No Abstract]   [Full Text] [Related]  

  • 25. [Studies on the development of Chlorella pyrenoidosa and bacteria from the group Pseudomonas cultivated jointly].
    VLADIMIROVA MG; BAZAITOVA LV
    Mikrobiologiia; 1961; 30():593-600. PubMed ID: 13926344
    [No Abstract]   [Full Text] [Related]  

  • 26. [Relation of endogenous respiration and glucose metabolism in Chlorella].
    PIRSON A; DANIEL AL; BECKER EW
    Arch Mikrobiol; 1955; 22(2):214-8. PubMed ID: 13249514
    [No Abstract]   [Full Text] [Related]  

  • 27. Excess CO2 supply inhibits mixotrophic growth of Chlorella protothecoides and Nannochloropsis salina.
    Sforza E; Cipriani R; Morosinotto T; Bertucco A; Giacometti GM
    Bioresour Technol; 2012 Jan; 104():523-9. PubMed ID: 22088657
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of carbon dioxide supply on the chloroplast structure of Chlorella pyrenoidosa.
    Gergis MS
    Arch Mikrobiol; 1972; 83(4):321-7. PubMed ID: 5046795
    [No Abstract]   [Full Text] [Related]  

  • 29. Gas exchange of algae. IV. Reliability of Chlorella pyrenoidosa.
    Ammann EC; Fraser-Smith A
    Appl Microbiol; 1968 May; 16(5):669-72. PubMed ID: 4385488
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of inoculum physiological stage on the growth characteristics of Chlorella sorokiniana cultivated under different CO(2) concentrations.
    Mattos ER; Singh M; Cabrera ML; Das KC;
    Appl Biochem Biotechnol; 2012 Oct; 168(3):519-30. PubMed ID: 22836749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Carbon dioxide assimilation by Ochromonas malhamensis during thiamine and biotin deficiency. I. Heterotrophic carbon dioxide assimilation].
    KAUSS H; KANDLER O
    Arch Mikrobiol; 1962; 42():204-18. PubMed ID: 14454505
    [No Abstract]   [Full Text] [Related]  

  • 32. [AN AUTONMATIC DILUTION APPARATUS AND ITS USE IN PRODUCTION OF HOMOCONTINUOUS CHLORELLA CULTURES].
    SENGER H; WOLF HJ
    Arch Mikrobiol; 1964 Apr; 48():81-94. PubMed ID: 14196725
    [No Abstract]   [Full Text] [Related]  

  • 33. Co-Cultivation of Leptolyngbya tenuis (Cyanobacteria) and Chlorella ellipsoidea (Green alga) for Biodiesel Production, Carbon Sequestration, and Cadmium Accumulation.
    Satpati GG; Pal R
    Curr Microbiol; 2021 Apr; 78(4):1466-1481. PubMed ID: 33661421
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GROWTH OF CHLORELLA PYRENOIDOSA IN RECYCLED MEDIUM.
    LEONE DE
    Appl Microbiol; 1963 Sep; 11(5):427-9. PubMed ID: 14063786
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor.
    Fu W; Gudmundsson O; Feist AM; Herjolfsson G; Brynjolfsson S; Palsson BØ
    J Biotechnol; 2012 Oct; 161(3):242-9. PubMed ID: 22796827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor.
    Chiu SY; Kao CY; Chen CH; Kuan TC; Ong SC; Lin CS
    Bioresour Technol; 2008 Jun; 99(9):3389-96. PubMed ID: 17904359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. GAS EXCHANGE WITH MASS CULTURES OF ALGAE. II. RELIABILITY OF A PHOTOSYNTHETIC GAS EXCHANGER.
    HANNAN PJ; PATOUILLET C
    Appl Microbiol; 1963 Sep; 11(5):450-2. PubMed ID: 14063790
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving CO2 fixation efficiency by optimizing Chlorella PY-ZU1 culture conditions in sequential bioreactors.
    Cheng J; Huang Y; Feng J; Sun J; Zhou J; Cen K
    Bioresour Technol; 2013 Sep; 144():321-7. PubMed ID: 23891832
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris].
    Zheng H; Gao Z; Zhang Q; Huang H; Ji X; Sun H; Dou C
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):436-44. PubMed ID: 21650025
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Co-culturing Chlorella minutissima with Escherichia coli can increase neutral lipid production and improve biodiesel quality.
    Higgins BT; Labavitch JM; VanderGheynst JS
    Biotechnol Bioeng; 2015 Sep; 112(9):1801-9. PubMed ID: 25855090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.