These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 14490400)
21. Nonstatistical 13C distribution during carbon transfer from glucose to ethanol during fermentation is determined by the catabolic pathway exploited. Bayle K; Akoka S; Remaud GS; Robins RJ J Biol Chem; 2015 Feb; 290(7):4118-28. PubMed ID: 25538251 [TBL] [Abstract][Full Text] [Related]
22. Isolation and properties of the glycolytic enzymes from Zymomonas mobilis. The five enzymes from glyceraldehyde-3-phosphate dehydrogenase through to pyruvate kinase. Pawluk A; Scopes RK; Griffiths-Smith K Biochem J; 1986 Aug; 238(1):275-81. PubMed ID: 3026343 [TBL] [Abstract][Full Text] [Related]
23. Cell Aggregation and Aerobic Respiration Are Important for Jones-Burrage SE; Kremer TA; McKinlay JB Appl Environ Microbiol; 2019 May; 85(10):. PubMed ID: 30877116 [No Abstract] [Full Text] [Related]
24. Perspectives and new directions for bioprocess optimization using Zymomonas mobilis in the ethanol production. Todhanakasem T; Wu B; Simeon S World J Microbiol Biotechnol; 2020 Jul; 36(8):112. PubMed ID: 32656581 [TBL] [Abstract][Full Text] [Related]
25. Expression of Phosphofructokinase Is Not Sufficient to Enable Embden-Meyerhof-Parnas Glycolysis in Felczak MM; Jacobson TB; Ong WK; Amador-Noguez D; TerAvest MA Front Microbiol; 2019; 10():2270. PubMed ID: 31611868 [No Abstract] [Full Text] [Related]
26. Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Deanda K; Zhang M; Eddy C; Picataggio S Appl Environ Microbiol; 1996 Dec; 62(12):4465-70. PubMed ID: 8953718 [TBL] [Abstract][Full Text] [Related]
28. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose. Lawford HG; Rousseau JD Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270 [TBL] [Abstract][Full Text] [Related]
29. Pantothenate auxotrophy in Zymomonas mobilis ZM4 is due to a lack of aspartate decarboxylase activity. Gliessman JR; Kremer TA; Sangani AA; Jones-Burrage SE; McKinlay JB FEMS Microbiol Lett; 2017 Jul; 364(13):. PubMed ID: 28655181 [TBL] [Abstract][Full Text] [Related]
30. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis. Yanase H; Miyawaki H; Sakurai M; Kawakami A; Matsumoto M; Haga K; Kojima M; Okamoto K Appl Microbiol Biotechnol; 2012 Jun; 94(6):1667-78. PubMed ID: 22573268 [TBL] [Abstract][Full Text] [Related]
31. Adaptive laboratory evolution induced novel mutations in Zymomonas mobilis ATCC ZW658: a potential platform for co-utilization of glucose and xylose. Sarkar P; Mukherjee M; Goswami G; Das D J Ind Microbiol Biotechnol; 2020 Mar; 47(3):329-341. PubMed ID: 32152759 [TBL] [Abstract][Full Text] [Related]
32. High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue. Gu H; Zhang J; Bao J Biotechnol Bioeng; 2015 Sep; 112(9):1770-82. PubMed ID: 25851269 [TBL] [Abstract][Full Text] [Related]
33. Comparison of glucose/xylose co-fermentation by recombinant Zymomonas mobilis under different genetic and environmental conditions. Ma Y; Dong H; Zou S; Hong J; Zhang M Biotechnol Lett; 2012 Jul; 34(7):1297-304. PubMed ID: 22421973 [TBL] [Abstract][Full Text] [Related]
34. Kinetic modelling of the Zymomonas mobilis Entner-Doudoroff pathway: insights into control and functionality. Rutkis R; Kalnenieks U; Stalidzans E; Fell DA Microbiology (Reading); 2013 Dec; 159(Pt 12):2674-2689. PubMed ID: 24085837 [TBL] [Abstract][Full Text] [Related]
35. Levan production by Zymomonas mobilis in batch and continuous fermentation systems. Silbir S; Dagbagli S; Yegin S; Baysal T; Goksungur Y Carbohydr Polym; 2014 Jan; 99():454-61. PubMed ID: 24274530 [TBL] [Abstract][Full Text] [Related]
36. Effect of Brönsted acidic ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride on growth and co-fermentation of glucose, xylose and arabinose by Zymomonas mobilis AX101. Gyamerah M; Ampaw-Asiedu M; Mackey J; Menezes B; Woldesenbet S Lett Appl Microbiol; 2018 Jun; 66(6):549-557. PubMed ID: 29573262 [TBL] [Abstract][Full Text] [Related]
37. Improving cellulosic ethanol fermentability of Zymomonas mobilis by overexpression of sodium ion tolerance gene ZMO0119. Gao X; Gao Q; Bao J J Biotechnol; 2018 Sep; 282():32-37. PubMed ID: 29807049 [TBL] [Abstract][Full Text] [Related]
38. Development of corn silk as a biocarrier for Zymomonas mobilis biofilms in ethanol production from rice straw. Todhanakasem T; Tiwari R; Thanonkeo P J Gen Appl Microbiol; 2016; 62(2):68-74. PubMed ID: 27118074 [TBL] [Abstract][Full Text] [Related]
39. Thermodynamic and Kinetic Modeling of Co-utilization of Glucose and Xylose for 2,3-BDO Production by Wu C; Spiller R; Dowe N; Bomble YJ; St John PC Front Bioeng Biotechnol; 2021; 9():707749. PubMed ID: 34381766 [TBL] [Abstract][Full Text] [Related]