These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 1449310)
1. Quantitation of particulate microemboli during cardiopulmonary bypass: experimental and clinical studies. Liu JF; Su ZK; Ding WX Ann Thorac Surg; 1992 Dec; 54(6):1196-202. PubMed ID: 1449310 [TBL] [Abstract][Full Text] [Related]
2. Cardiopulmonary bypass. Microembolization and platelet aggregation. Solis RT; Kennedy PS; Beall AC; Noon GP; DeBakey ME Circulation; 1975 Jul; 52(1):103-8. PubMed ID: 1132112 [TBL] [Abstract][Full Text] [Related]
3. Significance of gaseous microemboli in the cerebral circulation during cardiopulmonary bypass in dogs. Johnston WE; Stump DA; DeWitt DS; Vinten-Johansen J; O'Steen WK; James RL; Prough DS Circulation; 1993 Nov; 88(5 Pt 2):II319-29. PubMed ID: 8222173 [TBL] [Abstract][Full Text] [Related]
4. Gaseous microemboli: sources, causes, and clinical considerations. Kurusz M Med Instrum; 1985; 19(2):73-6. PubMed ID: 4000011 [TBL] [Abstract][Full Text] [Related]
5. The effect of arterial filtration on reduction of gaseous microemboli in the middle cerebral artery during cardiopulmonary bypass. Padayachee TS; Parsons S; Theobold R; Gosling RG; Deverall PB Ann Thorac Surg; 1988 Jun; 45(6):647-9. PubMed ID: 3288143 [TBL] [Abstract][Full Text] [Related]
6. Impact of oxygenator characteristics on its capability to remove gaseous microemboli. De Somer F J Extra Corpor Technol; 2007 Dec; 39(4):271-3. PubMed ID: 18293817 [TBL] [Abstract][Full Text] [Related]
7. Reduction of microemboli count in the priming fluid of cardiopulmonary bypass circuits. Merkle F; Boettcher W; Schulz F; Kopitz M; Koster A; Hennig E; Hetzer R J Extra Corpor Technol; 2003 Jun; 35(2):133-8. PubMed ID: 12939022 [TBL] [Abstract][Full Text] [Related]
8. Prebypass filtration of cardiopulmonary bypass circuits: an outdated technique? Merkle F; Böttcher W; Hetzer R Perfusion; 2003 Mar; 18 Suppl 1():81-8. PubMed ID: 12708770 [TBL] [Abstract][Full Text] [Related]
9. Comparison of bubble and membrane oxygenators in short and long perfusions. Clark RE; Beauchamp RA; Magrath RA; Brooks JD; Ferguson TB; Weldon CS J Thorac Cardiovasc Surg; 1979 Nov; 78(5):655-66. PubMed ID: 491720 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of neonatal membrane oxygenators with respect to gaseous microemboli capture and transmembrane pressure gradients. Qiu F; Guan Y; Su X; Kunselman A; Undar A Artif Organs; 2010 Nov; 34(11):923-9. PubMed ID: 21092035 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops. Guan Y; Palanzo D; Kunselman A; Undar A Artif Organs; 2009 Nov; 33(11):1037-43. PubMed ID: 19874280 [TBL] [Abstract][Full Text] [Related]
12. Comparison of gaseous microemboli counts in arterial, simultaneous and venous heat exchange with a hollow fiber membrane oxygenator. Sutton RG; Riley JB; Merrill JH J Extra Corpor Technol; 1994; 26(2):56-60. PubMed ID: 10147369 [TBL] [Abstract][Full Text] [Related]
13. Cardiopulmonary bypass impairs vascular endothelial relaxation: effects of gaseous microemboli in dogs. Feerick AE; Johnston WE; Steinsland O; Lin C; Wang Y; Uchida T; Prough DS Am J Physiol; 1994 Sep; 267(3 Pt 2):H1174-82. PubMed ID: 8092283 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of Quadrox-i and Capiox FX neonatal oxygenators with integrated arterial filters in eliminating gaseous microemboli and retaining hemodynamic properties during simulated cardiopulmonary bypass. Lin J; Dogal NM; Mathis RK; Qiu F; Kunselman A; Ündar A Perfusion; 2012 May; 27(3):235-43. PubMed ID: 22337759 [TBL] [Abstract][Full Text] [Related]
15. In-Vitro Evaluation of Two Types of Neonatal Oxygenators in Handling Gaseous Microemboli and Maintaining Optimal Hemodynamic Stability During Cardiopulmonary Bypass. Marupudi N; Wang S; Canêo LF; Jatene FB; Kunselman AR; Undar A Braz J Cardiovasc Surg; 2016; 31(5):343-350. PubMed ID: 27982342 [TBL] [Abstract][Full Text] [Related]
16. Fate of indium 111-labeled platelets during cardiopulmonary bypass performed with membrane and bubble oxygenators. Peterson KA; Dewanjee MK; Kaye MP J Thorac Cardiovasc Surg; 1982 Jul; 84(1):39-43. PubMed ID: 7087539 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of Capiox RX25 and Quadrox-i Adult Hollow Fiber Membrane Oxygenators in a Simulated Cardiopulmonary Bypass Circuit. Wang S; Kunselman AR; Ündar A Artif Organs; 2016 May; 40(5):E69-78. PubMed ID: 27168381 [TBL] [Abstract][Full Text] [Related]
18. Pathophysiology of cardiopulmonary bypass: current issues. Utley JR J Card Surg; 1990 Sep; 5(3):177-89. PubMed ID: 2133841 [TBL] [Abstract][Full Text] [Related]
19. Respiratory dysfunction and white cell activation following cardiopulmonary bypass: comparison of membrane and bubble oxygenators. Martin W; Carter R; Tweddel A; Belch J; el-Fiky M; McQuiston AM; McLaren M; Wheatley DJ Eur J Cardiothorac Surg; 1996; 10(9):774-83. PubMed ID: 8905281 [TBL] [Abstract][Full Text] [Related]
20. An ultrasonic analysis of the comparative efficiency of various cardiotomy reservoirs and micropore blood filters. Pearson DT; Watson BG; Waterhouse PS Thorax; 1978 Jun; 33(3):352-8. PubMed ID: 684672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]