These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 1449649)

  • 21. Dissociation of the medial prefrontal, posterior parietal, and posterior temporal cortex for spatial navigation and recognition memory in the rat.
    Kolb B; Buhrmann K; McDonald R; Sutherland RJ
    Cereb Cortex; 1994; 4(6):664-80. PubMed ID: 7703691
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extensive cytotoxic lesions of the rat retrosplenial cortex reveal consistent deficits on tasks that tax allocentric spatial memory.
    Vann SD; Aggleton JP
    Behav Neurosci; 2002 Feb; 116(1):85-94. PubMed ID: 11895186
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of egocentric and world-centered reference frames in the rat posterior parietal cortex.
    Wilber AA; Clark BJ; Forster TC; Tatsuno M; McNaughton BL
    J Neurosci; 2014 Apr; 34(16):5431-46. PubMed ID: 24741034
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of rat posterior parietal cortex in coordinating spatial representations during place avoidance in dissociated reference frames on a continuously rotating arena (Carousel).
    Svoboda J; Telensky P; Blahna K; Vodicka M; Stuchlik A
    Behav Brain Res; 2015 Oct; 292():1-9. PubMed ID: 25986405
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Where am I and how will I get there from here? A role for posterior parietal cortex in the integration of spatial information and route planning.
    Calton JL; Taube JS
    Neurobiol Learn Mem; 2009 Feb; 91(2):186-96. PubMed ID: 18929674
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The neural basis of the egocentric and allocentric spatial frame of reference.
    Zaehle T; Jordan K; Wüstenberg T; Baudewig J; Dechent P; Mast FW
    Brain Res; 2007 Mar; 1137(1):92-103. PubMed ID: 17258693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison of the contributions of the frontal and parietal association cortex to spatial localization in rats.
    Kolb B; Sutherland RJ; Whishaw IQ
    Behav Neurosci; 1983 Feb; 97(1):13-27. PubMed ID: 6838719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hemispheric asymmetry in cortical control of memory-guided saccades. A transcranial magnetic stimulation study.
    Müri RM; Gaymard B; Rivaud S; Vermersch A; Hess CW; Pierrot-Deseilligny C
    Neuropsychologia; 2000; 38(8):1105-11. PubMed ID: 10838145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disrupted allocentric but preserved egocentric spatial learning in transgenic mice with impaired glucocorticoid receptor function.
    Steckler T; Weis C; Sauvage M; Mederer A; Holsboer F
    Behav Brain Res; 1999 Apr; 100(1-2):77-89. PubMed ID: 10212055
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reversible disconnection of the hippocampal-prelimbic cortical circuit impairs spatial learning but not passive avoidance learning in rats.
    Wang GW; Cai JX
    Neurobiol Learn Mem; 2008 Sep; 90(2):365-73. PubMed ID: 18614383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overlap and interdigitation of cortical and thalamic afferents to dorsocentral striatum in the rat.
    Cheatwood JL; Corwin JV; Reep RL
    Brain Res; 2005 Mar; 1036(1-2):90-100. PubMed ID: 15725405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lesions of the rat postsubiculum impair performance on spatial tasks.
    Taube JS; Kesslak JP; Cotman CW
    Behav Neural Biol; 1992 Mar; 57(2):131-43. PubMed ID: 1586352
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lesions of the dorsal hippocampus or parietal cortex differentially affect spatial information processing.
    Rogers JL; Kesner RP
    Behav Neurosci; 2006 Aug; 120(4):852-60. PubMed ID: 16893291
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Egocentric memory impaired and allocentric memory intact as assessed by virtual reality in subjects with unilateral parietal cortex lesions.
    Weniger G; Ruhleder M; Wolf S; Lange C; Irle E
    Neuropsychologia; 2009 Jan; 47(1):59-69. PubMed ID: 18789955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human cortical EEG rhythms during long-term episodic memory task. A high-resolution EEG study of the HERA model.
    Babiloni C; Babiloni F; Carducci F; Cappa S; Cincotti F; Del Percio C; Miniussi C; Moretti DV; Pasqualetti P; Rossi S; Sosta K; Rossini PM
    Neuroimage; 2004 Apr; 21(4):1576-84. PubMed ID: 15050581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of light deprivation on recovery from neglect and extinction induced by unilateral lesions of the medial agranular cortex and dorsocentral striatum.
    Van Vleet TM; Heldt SA; Pyter B; Corwin JV; Reep RL
    Behav Brain Res; 2003 Jan; 138(2):165-78. PubMed ID: 12527447
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissociation of item and order memory following parietal cortex lesions in the rat.
    Kesner RP; Gray ML
    Behav Neurosci; 1989 Aug; 103(4):907-10. PubMed ID: 2765193
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Medial prefrontal lesions in the rat and spatial navigation: evidence for impaired planning.
    Granon S; Poucet B
    Behav Neurosci; 1995 Jun; 109(3):474-84. PubMed ID: 7662158
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Response-related deficits following unilateral lesions of the medial agranular cortex of the rat.
    Brown VJ; Bowman EM; Robbins TW
    Behav Neurosci; 1991 Aug; 105(4):567-78. PubMed ID: 1930725
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neglect following unilateral ablation of the caudal but not the rostral portion of medial agranular cortex of the rat and the therapeutic effect of apomorphine.
    King V; Corwin JV
    Behav Brain Res; 1990 Mar; 37(2):169-84. PubMed ID: 2322414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.