These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

564 related articles for article (PubMed ID: 14498379)

  • 1. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl.
    SCHILDKRAUT CL; MARMUR J; DOTY P
    J Mol Biol; 1962 Jun; 4():430-43. PubMed ID: 14498379
    [No Abstract]   [Full Text] [Related]  

  • 2. Buoyant density of DNA-Hoechst 33258 (bisbenzimide) complexes in CsCl gradients: Hoechst 33258 binds to single AT base pairs.
    Karlovsky P; de Cock AW
    Anal Biochem; 1991 Apr; 194(1):192-7. PubMed ID: 1714251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BASE COMPOSITION OF DEOXYRIBONUCLEIC ACID OF MARINE AND NONMARINE VIBRIOS DEDUCED FROM BUOYANT-DENSITY MEASUREMENTS IN CESIUM CHLORIDE.
    COLWELL RR; MANDEL M
    J Bacteriol; 1964 Dec; 88(6):1816-7. PubMed ID: 14240980
    [No Abstract]   [Full Text] [Related]  

  • 4. Diversity and phylogenetic implications of CsCl profiles from rodent DNAs.
    Douady C; Carels N; Clay O; Catzeflis F; Bernardi G
    Mol Phylogenet Evol; 2000 Nov; 17(2):219-30. PubMed ID: 11083936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of DNA base composition by small scale acrylamide-CsCl gradient centrifugation.
    Ahn IY; Winter CE
    J Biochem Biophys Methods; 2005 Jun; 63(3):155-60. PubMed ID: 15936091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature.
    MARMUR J; DOTY P
    J Mol Biol; 1962 Jul; 5():109-18. PubMed ID: 14470099
    [No Abstract]   [Full Text] [Related]  

  • 7. Virus purification by CsCl density gradient using general centrifugation.
    Nasukawa T; Uchiyama J; Taharaguchi S; Ota S; Ujihara T; Matsuzaki S; Murakami H; Mizukami K; Sakaguchi M
    Arch Virol; 2017 Nov; 162(11):3523-3528. PubMed ID: 28785814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of GelGreen™ in Cesium Chloride Density Gradients for DNA-Stable Isotope Probing Experiments.
    Gao J; Pan K; Li H; Fan X; Sun L; Zhang S; Gao Y
    PLoS One; 2017; 12(1):e0169554. PubMed ID: 28056074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An internal standard for the determination of buoyant density of RNA in CsCl density gradient.
    Daniel E; Banin D
    Biochim Biophys Acta; 1970 Dec; 224(2):311-8. PubMed ID: 5498066
    [No Abstract]   [Full Text] [Related]  

  • 10. Stable isotope probing with 15N achieved by disentangling the effects of genome G+C content and isotope enrichment on DNA density.
    Buckley DH; Huangyutitham V; Hsu SF; Nelson TA
    Appl Environ Microbiol; 2007 May; 73(10):3189-95. PubMed ID: 17369331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of genomic DNA from Hawaiian bobtail squid (Euprymna scolopes) tissue by cesium chloride gradient centrifugation.
    Lee PN; McFall-Ngai MJ; Callaerts P; de Couet HG
    Cold Spring Harb Protoc; 2009 Nov; 2009(11):pdb.prot5319. PubMed ID: 20150058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid separation of DNAs by buoyant density in three-layer CsCl gradients.
    Babykin MM; Zinchenko VV
    Anal Biochem; 1984 Feb; 137(1):175-81. PubMed ID: 6428263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of the time course of macromolecular separations in an ultracentrifuge. I. Formation of a cesium chloride density gradient at 25 degrees C.
    Minton AP
    Biophys Chem; 1992 Jan; 42(1):13-21. PubMed ID: 1581511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compositional heterogeneity within and among isochores in mammalian genomes. I. CsCl and sequence analyses.
    Clay O; Carels N; Douady C; Macaya G; Bernardi G
    Gene; 2001 Oct; 276(1-2):15-24. PubMed ID: 11591467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Buoyant and potentiometric titrations of synthetic polpeptides. II. Five copolypeptides and two nonionizable homopolypeptides in CsCl solutions.
    Sharp DS; Malmassy R; Lum LG; Kinzie K; Zil JS; Ifft JB
    Biopolymers; 1976 Apr; 15(4):757-83. PubMed ID: 3235
    [No Abstract]   [Full Text] [Related]  

  • 16. Cesium chloride-bisbenzimide gradients for separation of phytoplasma and plant DNA.
    Tran-Nguyen LT; Schneider B
    Methods Mol Biol; 2013; 938():381-93. PubMed ID: 22987432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CsF/CsCl Recording Solution.
    Cold Spring Harb Protoc; 2017 Jan; 2017(1):. PubMed ID: 28049790
    [No Abstract]   [Full Text] [Related]  

  • 18. Compositional patterns in reptilian genomes.
    Hughes S; Clay O; Bernardi G
    Gene; 2002 Aug; 295(2):323-9. PubMed ID: 12354668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isopycnic-centrifugation studies in caesium chloride and in caesium sulphate on dermatan sulphate proteoglycans from bovine sclera.
    Sheehan JK; Carlstedt I; Cöster L; Malmström A; Fransson LA
    Biochem J; 1981 Dec; 199(3):581-9. PubMed ID: 7340820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Buoyant and potentiometric titrations of synthetic polypeptides. I. Six ionizable homopolypeptides in CsCl solutions.
    Almassy R; Zil JS; Lum LG; Ifft JB
    Biopolymers; 1973 Dec; 12(12):2713-29. PubMed ID: 4782549
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 29.