BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 14499295)

  • 21. Elastic properties of osteoporotic bone measured by scanning acoustic microscopy.
    Hasegawa K; Turner CH; Recker RR; Wu E; Burr DB
    Bone; 1995 Jan; 16(1):85-90. PubMed ID: 7742089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The fracture toughness of cancellous bone.
    Cook RB; Zioupos P
    J Biomech; 2009 Sep; 42(13):2054-60. PubMed ID: 19643417
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Difference in subchondral cancellous bone between postmenopausal women with hip osteoarthritis and osteoporotic fracture: implication for fatigue microdamage, bone microarchitecture, and biomechanical properties.
    Li ZC; Dai LY; Jiang LS; Qiu S
    Arthritis Rheum; 2012 Dec; 64(12):3955-62. PubMed ID: 23124609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical and microarchitectural analyses of cancellous bone through experiment and computer simulation.
    Syahrom A; Abdul Kadir MR; Abdullah J; Öchsner A
    Med Biol Eng Comput; 2011 Dec; 49(12):1393-403. PubMed ID: 21947767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture.
    Kabel J; van Rietbergen B; Odgaard A; Huiskes R
    Bone; 1999 Oct; 25(4):481-6. PubMed ID: 10511116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Separate effects of osteoporosis and density on the strength and stiffness of human cancellous bone.
    Hodgskinson R; Currey JD
    Clin Biomech (Bristol, Avon); 1993 Sep; 8(5):262-8. PubMed ID: 23915987
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A method for patient-specific evaluation of vertebral cancellous bone strength: in vitro validation.
    Diamant I; Shahar R; Masharawi Y; Gefen A
    Clin Biomech (Bristol, Avon); 2007 Mar; 22(3):282-91. PubMed ID: 17134802
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationships between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions.
    Van Rietbergen B; Odgaard A; Kabel J; Huiskes R
    J Orthop Res; 1998 Jan; 16(1):23-8. PubMed ID: 9565069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Orthotropic properties of cancellous bone modelled as parameterized cellular material.
    Kowalczyk P
    Comput Methods Biomech Biomed Engin; 2006 Jun; 9(3):135-47. PubMed ID: 16880164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone.
    Liu XS; Sajda P; Saha PK; Wehrli FW; Guo XE
    J Bone Miner Res; 2006 Oct; 21(10):1608-17. PubMed ID: 16995816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone.
    Kabel J; van Rietbergen B; Dalstra M; Odgaard A; Huiskes R
    J Biomech; 1999 Jul; 32(7):673-80. PubMed ID: 10400354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel approach to estimate trabecular bone anisotropy from stress tensors.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    Biomech Model Mechanobiol; 2015 Jan; 14(1):39-48. PubMed ID: 24777672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical modelling of cancellous bone damage using an orthotropic failure criterion and tissue elastic properties as a function of the mineral content and microporosity.
    Megías R; Vercher-Martínez A; Belda R; Peris JL; Larrainzar-Garijo R; Giner E; Fuenmayor FJ
    Comput Methods Programs Biomed; 2022 Jun; 219():106764. PubMed ID: 35366593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The biomechanical effects of osteoporosis vertebral augmentation with cancellous bone granules or bone cement on treated and adjacent non-treated vertebral bodies: a finite element evaluation.
    Zhang L; Yang G; Wu L; Yu B
    Clin Biomech (Bristol, Avon); 2010 Feb; 25(2):166-72. PubMed ID: 19917516
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural strength of cancellous specimens from bovine femur under cyclic compression.
    Endo K; Yamada S; Todoh M; Takahata M; Iwasaki N; Tadano S
    PeerJ; 2016; 4():e1562. PubMed ID: 26855856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-trabecula building block for large-scale finite element models of cancellous bone.
    Dagan D; Be'ery M; Gefen A
    Med Biol Eng Comput; 2004 Jul; 42(4):549-56. PubMed ID: 15320466
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The fabric dependence of the orthotropic elastic constants of cancellous bone.
    Turner CH; Cowin SC; Rho JY; Ashman RB; Rice JC
    J Biomech; 1990; 23(6):549-61. PubMed ID: 2341418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effective elastic properties of human trabecular bone may be approximated using micro-finite element analyses of embedded volume elements.
    Daszkiewicz K; Maquer G; Zysset PK
    Biomech Model Mechanobiol; 2017 Jun; 16(3):731-742. PubMed ID: 27785611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of boundary conditions on computed apparent elastic properties of cancellous bone.
    Pahr DH; Zysset PK
    Biomech Model Mechanobiol; 2008 Dec; 7(6):463-76. PubMed ID: 17972122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel approach to estimate trabecular bone anisotropy using a database approach.
    Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B
    J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.