BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 14499448)

  • 1. Topical cannabinoid enhances topical morphine antinociception.
    Yesilyurt O; Dogrul A; Gul H; Seyrek M; Kusmez O; Ozkan Y; Yildiz O
    Pain; 2003 Sep; 105(1-2):303-8. PubMed ID: 14499448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topical cannabinoid antinociception: synergy with spinal sites.
    Dogrul A; Gul H; Akar A; Yildiz O; Bilgin F; Guzeldemir E
    Pain; 2003 Sep; 105(1-2):11-6. PubMed ID: 14499415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of spinal 5-HT
    Aksu AG; Gunduz O; Ulugol A
    Can J Physiol Pharmacol; 2018 Jun; 96(6):618-623. PubMed ID: 29406831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The additive antinociceptive interaction between WIN 55,212-2, a cannabinoid agonist, and ketorolac.
    Ulugöl A; Ozyigit F; Yesilyurt O; Dogrul A
    Anesth Analg; 2006 Feb; 102(2):443-7. PubMed ID: 16428540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pronociceptive effects of spinal dynorphin promote cannabinoid-induced pain and antinociceptive tolerance.
    Gardell LR; Burgess SE; Dogrul A; Ossipov MH; Malan TP; Lai J; Porreca F
    Pain; 2002 Jul; 98(1-2):79-88. PubMed ID: 12098619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lack of cross-tolerance to the antinociceptive effects of systemic and topical cannabinoids in morphine-tolerant mice.
    Yeşilyurt O; Dogrul A
    Neurosci Lett; 2004 Nov; 371(2-3):122-7. PubMed ID: 15519741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antinociceptive effect of intrathecal cannabinoid receptor agonist WIN 55,212-2 in a rat bone tumor pain model.
    Cui JH; Kim WM; Lee HG; Kim YO; Kim CM; Yoon MH
    Neurosci Lett; 2011 Apr; 493(3):67-71. PubMed ID: 21195743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between μ-opioid receptor agonists and cannabinoid receptor agonists in rhesus monkeys: antinociception, drug discrimination, and drug self-administration.
    Maguire DR; Yang W; France CP
    J Pharmacol Exp Ther; 2013 Jun; 345(3):354-62. PubMed ID: 23536317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The periaqueductal gray contributes to bidirectional enhancement of antinociception between morphine and cannabinoids.
    Wilson-Poe AR; Pocius E; Herschbach M; Morgan MM
    Pharmacol Biochem Behav; 2013 Jan; 103(3):444-9. PubMed ID: 23063785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cannabinoids blocks tactile allodynia in diabetic mice without attenuation of its antinociceptive effect.
    Doğrul A; Gül H; Yildiz O; Bilgin F; Güzeldemir ME
    Neurosci Lett; 2004 Sep; 368(1):82-6. PubMed ID: 15342139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CB1 receptor activation in the basolateral amygdala produces antinociception in animal models of acute and tonic nociception.
    Hasanein P; Parviz M; Keshavarz M; Javanmardi K
    Clin Exp Pharmacol Physiol; 2007; 34(5-6):439-49. PubMed ID: 17439413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antinociceptive effect of the cannabinoid agonist, WIN 55,212-2, in the orofacial and temporomandibular formalin tests.
    Burgos E; Pascual D; Martín MI; Goicoechea C
    Eur J Pain; 2010 Jan; 14(1):40-8. PubMed ID: 19318283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic and additive interactions of the cannabinoid agonist CP55,940 with mu opioid receptor and alpha2-adrenoceptor agonists in acute pain models in mice.
    Tham SM; Angus JA; Tudor EM; Wright CE
    Br J Pharmacol; 2005 Mar; 144(6):875-84. PubMed ID: 15778704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in nociceptin/orphanin FQ levels in rat brain regions after acute and chronic cannabinoid treatment in conjunction with the development of antinociceptive tolerance.
    Ulugol A; Topuz RD; Gunduz O; Kizilay G; Karadag HC
    Fundam Clin Pharmacol; 2016 Dec; 30(6):537-548. PubMed ID: 27371029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacologic interaction between cannabinoid and either clonidine or neostigmine in the rat formalin test.
    Yoon MH; Choi JI
    Anesthesiology; 2003 Sep; 99(3):701-7. PubMed ID: 12960556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systemic cannabinoids produce CB₁-mediated antinociception by activation of descending serotonergic pathways that act upon spinal 5-HT(7) and 5-HT(2A) receptors.
    Seyrek M; Kahraman S; Deveci MS; Yesilyurt O; Dogrul A
    Eur J Pharmacol; 2010 Dec; 649(1-3):183-94. PubMed ID: 20868676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low dose combination of morphine and delta9-tetrahydrocannabinol circumvents antinociceptive tolerance and apparent desensitization of receptors.
    Smith PA; Selley DE; Sim-Selley LJ; Welch SP
    Eur J Pharmacol; 2007 Oct; 571(2-3):129-37. PubMed ID: 17603035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential cholera-toxin sensitivity of supraspinal antinociception induced by the cannabinoid agonists delta9-THC, WIN 55,212-2 and anandamide in mice.
    Raffa RB; Stone DJ; Hipp SJ
    Neurosci Lett; 1999 Mar; 263(1):29-32. PubMed ID: 10218903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-tolerance to cannabinoids in morphine-tolerant rhesus monkeys.
    Gerak LR; Zanettini C; Koek W; France CP
    Psychopharmacology (Berl); 2015 Oct; 232(19):3637-47. PubMed ID: 26202613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynorphin-independent spinal cannabinoid antinociception.
    Gardell LR; Ossipov MH; Vanderah TW; Lai J; Porreca F
    Pain; 2002 Dec; 100(3):243-248. PubMed ID: 12467995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.