These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 14499549)
1. Measuring sediment exchange rates on an intertidal bank at Blacktoft, Humber Estuary, UK. Mitchell SB; Couperthwaite JS; West JR; Lawler DM Sci Total Environ; 2003 Oct; 314-316():535-49. PubMed ID: 14499549 [TBL] [Abstract][Full Text] [Related]
2. Concentrations of suspended particulate organic carbon in the tidal Yorkshire Ouse River and Humber Estuary. Uncles RJ; Frickers PE; Easton AE; Griffiths ML; Harris C; Howland RJ; King RS; Morris AW; Plummer DH; Tappin AD Sci Total Environ; 2000 May; 251-252():233-42. PubMed ID: 10847164 [TBL] [Abstract][Full Text] [Related]
3. The fluxes and transformations of suspended particles, carbon and nitrogen in the Humber estuarine system (UK) from 1994 to 1996: results from an integrated observation and modelling study. Tappin AD; Harris JR; Uncles RJ Sci Total Environ; 2003 Oct; 314-316():665-713. PubMed ID: 14499558 [TBL] [Abstract][Full Text] [Related]
4. Integration of shelf evolution and river basin models to simulate Holocene sediment dynamics of the Humber Estuary during periods of sea-level change and variations in catchment sediment supply. Shennan I; Coulthard T; Flather R; Horton B; Macklin M; Rees J; Wright M Sci Total Environ; 2003 Oct; 314-316():737-54. PubMed ID: 14499561 [TBL] [Abstract][Full Text] [Related]
5. Modelling intertidal sediment transport for nutrient change and climate change scenarios. Wood R; Widdows J Sci Total Environ; 2003 Oct; 314-316():637-49. PubMed ID: 14499556 [TBL] [Abstract][Full Text] [Related]
6. The influence of storm events on fine sediment transport, erosion and deposition within a reach of the River Swale, Yorkshire, UK. Smith BP; Naden PS; Leeks GJ; Wass PD Sci Total Environ; 2003 Oct; 314-316():451-74. PubMed ID: 14499545 [TBL] [Abstract][Full Text] [Related]
7. The water quality of the River Trent: from the lower non-tidal reaches to the freshwater tidal zone. Jarvie HP; Neal C; Tappin AD; Burton JD; Harrow M; Hill L; Neal M Sci Total Environ; 2000 May; 251-252():335-67. PubMed ID: 10847172 [TBL] [Abstract][Full Text] [Related]
8. Initial adjustments within a new river channel: Interactions between fluvial processes, colonizing vegetation, and bank profile development. Gurnell AM; Morrissey IP; Boitsidis AJ; Bark T; Clifford NJ; Petts GE; Thompson K Environ Manage; 2006 Oct; 38(4):580-96. PubMed ID: 16933081 [TBL] [Abstract][Full Text] [Related]
9. Modelling sediment-microbial dynamics in the South Nation River, Ontario, Canada: Towards the prediction of aquatic and human health risk. Droppo IG; Krishnappan BG; Liss SN; Marvin C; Biberhofer J Water Res; 2011 Jun; 45(12):3797-809. PubMed ID: 21558043 [TBL] [Abstract][Full Text] [Related]
10. Phosphorus load to surface water from bank erosion in a Danish lowland river basin. Kronvang B; Audet J; Baattrup-Pedersen A; Jensen HS; Larsen SE J Environ Qual; 2012; 41(2):304-13. PubMed ID: 22370392 [TBL] [Abstract][Full Text] [Related]
11. Effect of wave-current interactions on sediment resuspension in large shallow Lake Taihu, China. Li Y; Tang C; Wang J; Acharya K; Du W; Gao X; Luo L; Li H; Dai S; Mercy J; Yu Z; Pan B Environ Sci Pollut Res Int; 2017 Feb; 24(4):4029-4039. PubMed ID: 27924433 [TBL] [Abstract][Full Text] [Related]
12. LOIS in-stream water quality modelling. Part 1. Catchments and methods. Boorman DB Sci Total Environ; 2003 Oct; 314-316():379-95. PubMed ID: 14499541 [TBL] [Abstract][Full Text] [Related]
13. Lidar quantification of bank erosion in Blue Earth County, Minnesota. Kessler AC; Gupta SC; Dolliver HA; Thoma DP J Environ Qual; 2012; 41(1):197-207. PubMed ID: 22218188 [TBL] [Abstract][Full Text] [Related]
14. Analysis of sediment retention in western riverine wetlands: the Yampa River watershed, Colorado, USA. Arp CD; Cooper DJ Environ Manage; 2004 Mar; 33(3):318-30. PubMed ID: 15170244 [TBL] [Abstract][Full Text] [Related]
15. Assessment of potential impact of invasive vegetation on cohesive sediment erodibility in intertidal flats. Seo JY; Choi SM; Ha HK Sci Total Environ; 2021 Apr; 766():144493. PubMed ID: 33418259 [TBL] [Abstract][Full Text] [Related]
16. Nutrient dynamics in a lowland stream impacted by sewage effluent: Great Ouse, England. House WA; Denison FH Sci Total Environ; 1997 Oct; 205(1):25-49. PubMed ID: 9352669 [TBL] [Abstract][Full Text] [Related]
17. Physical properties and processes in the Bristol Channel and Severn Estuary. Uncles RJ Mar Pollut Bull; 2010; 61(1-3):5-20. PubMed ID: 20106490 [TBL] [Abstract][Full Text] [Related]
18. Effects of sandy vs muddy sediments on the vertical distribution of microphytobenthos in intertidal flats of the Fraser River Estuary, Canada. Yin K; Zetsche EM; Harrison PJ Environ Sci Pollut Res Int; 2016 Jul; 23(14):14196-209. PubMed ID: 27053045 [TBL] [Abstract][Full Text] [Related]
19. Patterns in trace element chemistry in the freshwater tidal reaches of the River Trent. Jarvie HP; Neal C; Burton JD; Tappin AD Sci Total Environ; 2000 May; 251-252():317-33. PubMed ID: 10847171 [TBL] [Abstract][Full Text] [Related]
20. Dynamics of suspended sediment exchange and transport in a degraded mangrove creek in Kenya. Kitheka JU; Ongwenyi GS; Mavuti KM Ambio; 2002 Dec; 31(7-8):580-7. PubMed ID: 12572826 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]