These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 14499905)

  • 1. Solvation thermodynamics of xenon in n-alkanes, n-alcohols and water.
    Graziano G
    Biophys Chem; 2003 Sep; 105(2-3):371-82. PubMed ID: 14499905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the behavior of solutions of xenon in liquid n-alkanes: solubility of xenon in n-pentane and n-hexane.
    Bonifácio RP; Martins LF; McCabe C; Filipe EJ
    J Phys Chem B; 2010 Dec; 114(48):15897-904. PubMed ID: 21067166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvation thermodynamics of water in nonpolar organic solvents indicate the occurrence of nontraditional hydrogen bonds.
    Graziano G
    J Phys Chem B; 2005 Jan; 109(2):981-5. PubMed ID: 16866469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum chemical analysis of thermodynamics of 2D cluster formation of alkanes at the water/vapor interface in the presence of aliphatic alcohols.
    Vysotsky YB; Kartashynska ES; Belyaeva EA; Fainerman VB; Vollhardt D; Miller R
    Phys Chem Chem Phys; 2015 Nov; 17(43):28901-20. PubMed ID: 26455734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of hydrogen bonding on the diffusion of water in n-alkanes and n-alcohols measured with a novel single microdroplet method.
    Su JT; Duncan PB; Momaya A; Jutila A; Needham D
    J Chem Phys; 2010 Jan; 132(4):044506. PubMed ID: 20113048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the inclusion of alkanes into the monolayer of aliphatic alcohols at the water/alkane vapor interface: a quantum chemical approach.
    Vysotsky YB; Fomina ES; Belyaeva EA; Fainerman VB; Vollhardt D
    Phys Chem Chem Phys; 2013 Feb; 15(6):2159-76. PubMed ID: 23292086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay of self-association and solvation in polar liquids.
    Amenta V; Cook JL; Hunter CA; Low CM; Sun H; Vinter JG
    J Am Chem Soc; 2013 Aug; 135(32):12091-100. PubMed ID: 23915003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculating pKa values for substituted phenols and hydration energies for other compounds with the first-order Fuzzy-Border continuum solvation model.
    Sharma I; Kaminski GA
    J Comput Chem; 2012 Nov; 33(30):2388-99. PubMed ID: 22815192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superposition-additive approach in the description of thermodynamic parameters of formation and clusterization of substituted alkanes at the air/water interface.
    Vysotsky YB; Belyaeva EA; Fomina ES; Vasylyev AO; Vollhardt D; Fainerman VB; Aksenenko EV; Miller R
    J Colloid Interface Sci; 2012 Dec; 387(1):162-74. PubMed ID: 22939427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental swap energy and role of configurational entropy in transfer of small molecules from water into alkanes.
    Smejtek P; Word RC
    J Chem Phys; 2004 Jan; 120(3):1383-94. PubMed ID: 15268264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvophobic and solvophilic contributions in the water-to-aqueous guanidinium chloride transfer free energy of model peptides.
    Tomar DS; Ramesh N; Asthagiri D
    J Chem Phys; 2018 Jun; 148(22):222822. PubMed ID: 29907034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculation of the Gibbs free energy of solvation and dissociation of HCl in water via Monte Carlo simulations and continuum solvation models.
    McGrath MJ; Kuo IF; Ngouana W BF; Ghogomu JN; Mundy CJ; Marenich AV; Cramer CJ; Truhlar DG; Siepmann JI
    Phys Chem Chem Phys; 2013 Aug; 15(32):13578-85. PubMed ID: 23831584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of the hydrophobic effect. III. Condensation and aggregation of alkanes, alcohols, and alkylamines.
    Matulis D
    Biophys Chem; 2001 Oct; 93(1):67-82. PubMed ID: 11604217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excess thermodynamic properties of mixtures involving xenon and light alkanes: a study of their temperature dependence by computer simulation.
    Martins LF; Carvalho AJ; Ramalho JP; Filipe EJ
    J Phys Chem B; 2011 Aug; 115(32):9745-65. PubMed ID: 21721582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics of solutions. II. Flurbiprofen and diflunisal as models for studying solvation of drug substances.
    Perlovich GL; Kurkov SV; Bauer-Brandl A
    Eur J Pharm Sci; 2003 Aug; 19(5):423-32. PubMed ID: 12907293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cavities in molecular liquids and the theory of hydrophobic solubilities.
    Pohorille A; Pratt LR
    J Am Chem Soc; 1990; 112(13):5066-74. PubMed ID: 11540917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative assessment of computational methods for the determination of solvation free energies in alcohol-based molecules.
    Martins SA; Sousa SF
    J Comput Chem; 2013 Jun; 34(15):1354-62. PubMed ID: 23456962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of solubility, sublimation and solvation processes of parabens.
    Perlovich GL; Rodionov SV; Bauer-Brandl A
    Eur J Pharm Sci; 2005 Jan; 24(1):25-33. PubMed ID: 15626575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entropy convergence in the hydration thermodynamics of n-alcohols.
    Graziano G
    J Phys Chem B; 2005 Jun; 109(24):12160-6. PubMed ID: 16852500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Footprinting molecular electrostatic potential surfaces for calculation of solvation energies.
    Calero CS; Farwer J; Gardiner EJ; Hunter CA; Mackey M; Scuderi S; Thompson S; Vinter JG
    Phys Chem Chem Phys; 2013 Nov; 15(41):18262-73. PubMed ID: 24064723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.