These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 14499930)

  • 1. Unusual susceptibility of heme proteins to damage by glucose during non-enzymatic glycation.
    Cussimanio BL; Booth AA; Todd P; Hudson BG; Khalifah RG
    Biophys Chem; 2003 Sep; 105(2-3):743-55. PubMed ID: 14499930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro nonenzymatic glycation enhances the role of myoglobin as a source of oxidative stress.
    Roy A; Sen S; Chakraborti AS
    Free Radic Res; 2004 Feb; 38(2):139-46. PubMed ID: 15104207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heme protein radicals: formation, fate, and biological consequences.
    Giulivi C; Cadenas E
    Free Radic Biol Med; 1998 Jan; 24(2):269-79. PubMed ID: 9433902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attenuation of Glucose-Induced Myoglobin Glycation and the Formation of Advanced Glycation End Products (AGEs) by (R)-α-Lipoic Acid In Vitro.
    Ghelani H; Razmovski-Naumovski V; Pragada RR; Nammi S
    Biomolecules; 2018 Feb; 8(1):. PubMed ID: 29419812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of hydroxyl radicals in biological systems. Does myoglobin stimulate hydroxyl radical formation from hydrogen peroxide?
    Puppo A; Halliwell B
    Free Radic Res Commun; 1988; 4(6):415-22. PubMed ID: 2854107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. (R)-α-Lipoic acid inhibits fructose-induced myoglobin fructation and the formation of advanced glycation end products (AGEs) in vitro.
    Ghelani H; Razmovski-Naumovski V; Pragada RR; Nammi S
    BMC Complement Altern Med; 2018 Jan; 18(1):13. PubMed ID: 29334926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative routes for the formation of immunochemically distinct advanced glycation end-products in vivo.
    Takeuchi M; Makita Z
    Curr Mol Med; 2001 Jul; 1(3):305-15. PubMed ID: 11899079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemoglobin and myoglobin associated oxidative stress: from molecular mechanisms to disease States.
    Reeder BJ; Wilson MT
    Curr Med Chem; 2005; 12(23):2741-51. PubMed ID: 16305469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-enzymatic glycation induces structural modifications of myoglobin.
    Roy A; Sil R; Chakraborti AS
    Mol Cell Biochem; 2010 May; 338(1-2):105-14. PubMed ID: 20091095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species.
    Goodarzi M; Moosavi-Movahedi AA; Habibi-Rezaei M; Shourian M; Ghourchian H; Ahmad F; Farhadi M; Saboury AA; Sheibani N
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Sep; 130():561-7. PubMed ID: 24813286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of low-density lipoprotein oxidation by hemoglobin-derived iron.
    Grinshtein N; Bamm VV; Tsemakhovich VA; Shaklai N
    Biochemistry; 2003 Jun; 42(23):6977-85. PubMed ID: 12795592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyanidin-3-rutinoside attenuates methylglyoxal-induced protein glycation and DNA damage via carbonyl trapping ability and scavenging reactive oxygen species.
    Thilavech T; Ngamukote S; Belobrajdic D; Abeywardena M; Adisakwattana S
    BMC Complement Altern Med; 2016 May; 16():138. PubMed ID: 27215203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of oxyradicals on oxymyoglobin. Deoxygenation, haem removal and iron release.
    Prasad MR; Engelman RM; Jones RM; Das DK
    Biochem J; 1989 Nov; 263(3):731-6. PubMed ID: 2557008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immuno-spin trapping of hemoglobin and myoglobin radicals derived from nitrite-mediated oxidation.
    Keszler A; Mason RP; Hogg N
    Free Radic Biol Med; 2006 Feb; 40(3):507-15. PubMed ID: 16443166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling of dihydroriboflavin oxidation to the formation of the higher valence states of hemeproteins.
    Xu F; Hultquist DE
    Biochem Biophys Res Commun; 1991 Nov; 181(1):197-203. PubMed ID: 1659807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glyoxal-induced modification enhances stability of hemoglobin and lowers iron-mediated oxidation reactions of the heme protein: An in vitro study.
    Banerjee S
    Int J Biol Macromol; 2018 Feb; 107(Pt A):494-501. PubMed ID: 28888546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ascorbate peroxidase activity of cytochrome c.
    Bischin C; Deac F; Silaghi-Dumitrescu R; Worrall JA; Rajagopal BS; Damian G; Cooper CE
    Free Radic Res; 2011 Apr; 45(4):439-44. PubMed ID: 21128733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of low-density lipoprotein by hemoglobin-hemichrome.
    Bamm VV; Tsemakhovich VA; Shaklai N
    Int J Biochem Cell Biol; 2003 Mar; 35(3):349-58. PubMed ID: 12531248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MgFe-layered double hydroxide modified electrodes for direct electron transfer of heme proteins.
    Li M; Ji H; Wang Y; Liu L; Gao F
    Biosens Bioelectron; 2012; 38(1):239-44. PubMed ID: 22721646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of heme proteins with hydrogen peroxide: protein crosslinking and covalent binding of benzo[a]pyrene and 17 beta-estradiol.
    Rice RH; Lee YM; Brown WD
    Arch Biochem Biophys; 1983 Mar; 221(2):417-27. PubMed ID: 6301376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.