These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 14500326)

  • 1. Regulation of potassium transport in leaves: from molecular to tissue level.
    Shabala S
    Ann Bot; 2003 Nov; 92(5):627-34. PubMed ID: 14500326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organelle-localized potassium transport systems in plants.
    Hamamoto S; Uozumi N
    J Plant Physiol; 2014 May; 171(9):743-7. PubMed ID: 24810770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms and regulation of K+ transport in higher plants.
    Véry AA; Sentenac H
    Annu Rev Plant Biol; 2003; 54():575-603. PubMed ID: 14503004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of GhAKT1, a novel Shaker-like K⁺ channel gene involved in K⁺ uptake from cotton (Gossypium hirsutum).
    Xu J; Tian X; Egrinya Eneji A; Li Z
    Gene; 2014 Jul; 545(1):61-71. PubMed ID: 24802116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is the leaf bundle sheath a "smart flux valve" for K+ nutrition?
    Wigoda N; Moshelion M; Moran N
    J Plant Physiol; 2014 May; 171(9):715-22. PubMed ID: 24629888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular mechanisms of potassium transport in plants.
    Britto DT; Kronzucker HJ
    Physiol Plant; 2008 Aug; 133(4):637-50. PubMed ID: 18312500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular and tissue distribution of potassium: physiological relevance, mechanisms and regulation.
    Ahmad I; Maathuis FJ
    J Plant Physiol; 2014 May; 171(9):708-14. PubMed ID: 24810768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. K+ transport in plants: physiology and molecular biology.
    Szczerba MW; Britto DT; Kronzucker HJ
    J Plant Physiol; 2009 Mar; 166(5):447-66. PubMed ID: 19217185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment.
    Anschütz U; Becker D; Shabala S
    J Plant Physiol; 2014 May; 171(9):670-87. PubMed ID: 24635902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of magnesium availability on the activity of plasma membrane ion transporters and light-induced responses from broad bean leaf mesophyll.
    Shabala S; Hariadi Y
    Planta; 2005 Apr; 221(1):56-65. PubMed ID: 15645306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leaf photosynthesis is mediated by the coordination of nitrogen and potassium: The importance of anatomical-determined mesophyll conductance to CO
    Xie K; Lu Z; Pan Y; Gao L; Hu P; Wang M; Guo S
    Plant Sci; 2020 Jan; 290():110267. PubMed ID: 31779911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stomatal Spacing Safeguards Stomatal Dynamics by Facilitating Guard Cell Ion Transport Independent of the Epidermal Solute Reservoir.
    Papanatsiou M; Amtmann A; Blatt MR
    Plant Physiol; 2016 Sep; 172(1):254-63. PubMed ID: 27406168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrate transport in cucumber leaves is an inducible process involving an increase in plasma membrane H⁺-ATPase activity and abundance.
    Nikolic M; Cesco S; Monte R; Tomasi N; Gottardi S; Zamboni A; Pinton R; Varanini Z
    BMC Plant Biol; 2012 May; 12():66. PubMed ID: 22571503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring emergent properties in cellular homeostasis using OnGuard to model K+ and other ion transport in guard cells.
    Blatt MR; Wang Y; Leonhardt N; Hills A
    J Plant Physiol; 2014 May; 171(9):770-8. PubMed ID: 24268743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A protein kinase, calcineurin B-like protein-interacting protein Kinase9, interacts with calcium sensor calcineurin B-like Protein3 and regulates potassium homeostasis under low-potassium stress in Arabidopsis.
    Liu LL; Ren HM; Chen LQ; Wang Y; Wu WH
    Plant Physiol; 2013 Jan; 161(1):266-77. PubMed ID: 23109687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species?
    Véry AA; Nieves-Cordones M; Daly M; Khan I; Fizames C; Sentenac H
    J Plant Physiol; 2014 May; 171(9):748-69. PubMed ID: 24666983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-specific compartmentation of mineral nutrients is an essential mechanism for optimal plant productivity--another role for TPC1?
    Gilliham M; Athman A; Tyerman SD; Conn SJ
    Plant Signal Behav; 2011 Nov; 6(11):1656-61. PubMed ID: 22067997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis.
    Cheong YH; Pandey GK; Grant JJ; Batistic O; Li L; Kim BG; Lee SC; Kudla J; Luan S
    Plant J; 2007 Oct; 52(2):223-39. PubMed ID: 17922773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation by external K+ in a maize inward shaker channel targets transport activity in the high concentration range.
    Su YH; North H; Grignon C; Thibaud JB; Sentenac H; Véry AA
    Plant Cell; 2005 May; 17(5):1532-48. PubMed ID: 15805483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant HAK/KUP/KT K
    Li W; Xu G; Alli A; Yu L
    Semin Cell Dev Biol; 2018 Feb; 74():133-141. PubMed ID: 28711523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.