These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
442 related articles for article (PubMed ID: 14500510)
1. The ability to replicate in macrophages is conserved between Yersinia pestis and Yersinia pseudotuberculosis. Pujol C; Bliska JB Infect Immun; 2003 Oct; 71(10):5892-9. PubMed ID: 14500510 [TBL] [Abstract][Full Text] [Related]
2. Application of DNA microarrays to study the evolutionary genomics of Yersinia pestis and Yersinia pseudotuberculosis. Hinchliffe SJ; Isherwood KE; Stabler RA; Prentice MB; Rakin A; Nichols RA; Oyston PC; Hinds J; Titball RW; Wren BW Genome Res; 2003 Sep; 13(9):2018-29. PubMed ID: 12952873 [TBL] [Abstract][Full Text] [Related]
3. The role of the phoPQ operon in the pathogenesis of the fully virulent CO92 strain of Yersinia pestis and the IP32953 strain of Yersinia pseudotuberculosis. Bozue J; Mou S; Moody KL; Cote CK; Trevino S; Fritz D; Worsham P Microb Pathog; 2011 Jun; 50(6):314-21. PubMed ID: 21320584 [TBL] [Abstract][Full Text] [Related]
4. Yersinia pestis versus Yersinia pseudotuberculosis: effects on host macrophages. Bi Y; Wang X; Han Y; Guo Z; Yang R Scand J Immunol; 2012 Dec; 76(6):541-51. PubMed ID: 22882408 [TBL] [Abstract][Full Text] [Related]
5. Characterization of chromosomal regions conserved in Yersinia pseudotuberculosis and lost by Yersinia pestis. Pouillot F; Fayolle C; Carniel E Infect Immun; 2008 Oct; 76(10):4592-9. PubMed ID: 18678673 [TBL] [Abstract][Full Text] [Related]
6. The response regulator PhoP of Yersinia pseudotuberculosis is important for replication in macrophages and for virulence. Grabenstein JP; Marceau M; Pujol C; Simonet M; Bliska JB Infect Immun; 2004 Sep; 72(9):4973-84. PubMed ID: 15321989 [TBL] [Abstract][Full Text] [Related]
7. Defective innate cell response and lymph node infiltration specify Yersinia pestis infection. Guinet F; Avé P; Jones L; Huerre M; Carniel E PLoS One; 2008 Feb; 3(2):e1688. PubMed ID: 18301765 [TBL] [Abstract][Full Text] [Related]
8. Evolution and virulence contributions of the autotransporter proteins YapJ and YapK of Yersinia pestis CO92 and their homologs in Y. pseudotuberculosis IP32953. Lenz JD; Temple BR; Miller VL Infect Immun; 2012 Oct; 80(10):3693-705. PubMed ID: 22802344 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the Role of the opgGH Operon in Yersinia pseudotuberculosis and Its Deletion during the Emergence of Yersinia pestis. Quintard K; Dewitte A; Reboul A; Madec E; Bontemps-Gallo S; Dondeyne J; Marceau M; Simonet M; Lacroix JM; Sebbane F Infect Immun; 2015 Sep; 83(9):3638-47. PubMed ID: 26150539 [TBL] [Abstract][Full Text] [Related]
10. Global discovery of small RNAs in Yersinia pseudotuberculosis identifies Yersinia-specific small, noncoding RNAs required for virulence. Koo JT; Alleyne TM; Schiano CA; Jafari N; Lathem WW Proc Natl Acad Sci U S A; 2011 Sep; 108(37):E709-17. PubMed ID: 21876162 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the O-antigen gene clusters of Yersinia pseudotuberculosis and the cryptic O-antigen gene cluster of Yersinia pestis shows that the plague bacillus is most closely related to and has evolved from Y. pseudotuberculosis serotype O:1b. Skurnik M; Peippo A; Ervelä E Mol Microbiol; 2000 Jul; 37(2):316-30. PubMed ID: 10931327 [TBL] [Abstract][Full Text] [Related]
12. Bioluminescent tracing of a Yersinia pestis pCD1 Zhou Y; Zhou J; Ji Y; Li L; Tan Y; Tian G; Yang R; Wang X Microbes Infect; 2018 Mar; 20(3):166-175. PubMed ID: 29180033 [TBL] [Abstract][Full Text] [Related]
13. A putative DNA adenine methyltransferase is involved in Yersinia pseudotuberculosis pathogenicity. Pouillot F; Fayolle C; Carniel E Microbiology (Reading); 2007 Aug; 153(Pt 8):2426-2434. PubMed ID: 17660407 [TBL] [Abstract][Full Text] [Related]
14. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Achtman M; Zurth K; Morelli G; Torrea G; Guiyoule A; Carniel E Proc Natl Acad Sci U S A; 1999 Nov; 96(24):14043-8. PubMed ID: 10570195 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the three Yersinia pestis CRISPR loci provides new tools for phylogenetic studies and possibly for the investigation of ancient DNA. Vergnaud G; Li Y; Gorgé O; Cui Y; Song Y; Zhou D; Grissa I; Dentovskaya SV; Platonov ME; Rakin A; Balakhonov SV; Neubauer H; Pourcel C; Anisimov AP; Yang R Adv Exp Med Biol; 2007; 603():327-38. PubMed ID: 17966429 [TBL] [Abstract][Full Text] [Related]
16. Independent acquisition and insertion into different chromosomal locations of the same pathogenicity island in Yersinia pestis and Yersinia pseudotuberculosis. Hare JM; Wagner AK; McDonough KA Mol Microbiol; 1999 Jan; 31(1):291-303. PubMed ID: 9987130 [TBL] [Abstract][Full Text] [Related]
17. Caspase-1 activation in macrophages infected with Yersinia pestis KIM requires the type III secretion system effector YopJ. Lilo S; Zheng Y; Bliska JB Infect Immun; 2008 Sep; 76(9):3911-23. PubMed ID: 18559430 [TBL] [Abstract][Full Text] [Related]
18. The complete genome sequence of Yersinia pseudotuberculosis IP31758, the causative agent of Far East scarlet-like fever. Eppinger M; Rosovitz MJ; Fricke WF; Rasko DA; Kokorina G; Fayolle C; Lindler LE; Carniel E; Ravel J PLoS Genet; 2007 Aug; 3(8):e142. PubMed ID: 17784789 [TBL] [Abstract][Full Text] [Related]
19. A Trimeric Autotransporter Enhances Biofilm Cohesiveness in Yersinia pseudotuberculosis but Not in Yersinia pestis. Calder JT; Christman ND; Hawkins JM; Erickson DL J Bacteriol; 2020 Sep; 202(20):. PubMed ID: 32778558 [TBL] [Abstract][Full Text] [Related]
20. Increased virulence of Yersinia pseudotuberculosis by two independent mutations. Rosqvist R; Skurnik M; Wolf-Watz H Nature; 1988 Aug; 334(6182):522-4. PubMed ID: 3043229 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]