These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
706 related articles for article (PubMed ID: 14500770)
21. Differential expression of calcium channels in sympathetic and parasympathetic preganglionic inputs to neurons in paracervical ganglia of guinea-pigs. Jobling P; Gibbins IL; Lewis RJ; Morris JL Neuroscience; 2004; 127(2):455-66. PubMed ID: 15262335 [TBL] [Abstract][Full Text] [Related]
22. Voltage-dependent calcium channels in young and old human red cells. Romero PJ; Romero EA; Mateu D; Hernández C; Fernández I Cell Biochem Biophys; 2006; 46(3):265-76. PubMed ID: 17272852 [TBL] [Abstract][Full Text] [Related]
23. Simulation of Ca2+ persistent inward currents in spinal motoneurones: mode of activation and integration of synaptic inputs. Elbasiouny SM; Bennett DJ; Mushahwar VK J Physiol; 2006 Jan; 570(Pt 2):355-74. PubMed ID: 16308349 [TBL] [Abstract][Full Text] [Related]
24. P/Q Ca2+ channels are functionally coupled to exocytosis of the immediately releasable pool in mouse chromaffin cells. Alvarez YD; Ibañez LI; Uchitel OD; Marengo FD Cell Calcium; 2008 Feb; 43(2):155-64. PubMed ID: 17561253 [TBL] [Abstract][Full Text] [Related]
25. Co-assembly of N-type Ca2+ and BK channels underlies functional coupling in rat brain. Loane DJ; Lima PA; Marrion NV J Cell Sci; 2007 Mar; 120(Pt 6):985-95. PubMed ID: 17311846 [TBL] [Abstract][Full Text] [Related]
26. Differential facilitation of N- and P/Q-type calcium channels during trains of action potential-like waveforms. Currie KP; Fox AP J Physiol; 2002 Mar; 539(Pt 2):419-31. PubMed ID: 11882675 [TBL] [Abstract][Full Text] [Related]
27. Action potential stimulation reveals an increased role for P/Q-calcium channel-dependent exocytosis in mouse adrenal tissue slices. Chan SA; Polo-Parada L; Smith C Arch Biochem Biophys; 2005 Mar; 435(1):65-73. PubMed ID: 15680908 [TBL] [Abstract][Full Text] [Related]
28. How voltage-gated ion channels alter the functional properties of ganglion and amacrine cell dendrites. Miller RF; Stenback K; Henderson D; Sikora M Arch Ital Biol; 2002 Oct; 140(4):347-59. PubMed ID: 12228988 [TBL] [Abstract][Full Text] [Related]
30. Electrophysiological and molecular evidence of L-(Cav1), N- (Cav2.2), and R- (Cav2.3) type Ca2+ channels in rat cortical astrocytes. D'Ascenzo M; Vairano M; Andreassi C; Navarra P; Azzena GB; Grassi C Glia; 2004 Mar; 45(4):354-63. PubMed ID: 14966867 [TBL] [Abstract][Full Text] [Related]
31. Redundancy of Cav2.1 channel accessory subunits in transmitter release at the mouse neuromuscular junction. Kaja S; Todorov B; van de Ven RC; Ferrari MD; Frants RR; van den Maagdenberg AM; Plomp JJ Brain Res; 2007 Apr; 1143():92-101. PubMed ID: 17320843 [TBL] [Abstract][Full Text] [Related]
32. Cav1.2 calcium channels modulate the spiking pattern of hippocampal pyramidal cells. Lacinova L; Moosmang S; Langwieser N; Hofmann F; Kleppisch T Life Sci; 2008 Jan; 82(1-2):41-9. PubMed ID: 18045623 [TBL] [Abstract][Full Text] [Related]
33. Critical dependence of cAMP response element-binding protein phosphorylation on L-type calcium channels supports a selective response to EPSPs in preference to action potentials. Mermelstein PG; Bito H; Deisseroth K; Tsien RW J Neurosci; 2000 Jan; 20(1):266-73. PubMed ID: 10627604 [TBL] [Abstract][Full Text] [Related]
34. N- and P/Q-type Ca2+ channels regulate synaptic efficacy between spinal dorsolateral funiculus terminals and motoneurons. Aguilar J; Escobedo L; Bautista W; Felix R; Delgado-Lezama R Biochem Biophys Res Commun; 2004 Apr; 317(2):551-7. PubMed ID: 15063793 [TBL] [Abstract][Full Text] [Related]
35. Ion channels generating complex spikes in cartwheel cells of the dorsal cochlear nucleus. Kim Y; Trussell LO J Neurophysiol; 2007 Feb; 97(2):1705-25. PubMed ID: 17289937 [TBL] [Abstract][Full Text] [Related]