BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 14500793)

  • 1. Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome.
    Becker JD; Boavida LC; Carneiro J; Haury M; Feijó JA
    Plant Physiol; 2003 Oct; 133(2):713-25. PubMed ID: 14500793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation.
    Pina C; Pinto F; Feijó JA; Becker JD
    Plant Physiol; 2005 Jun; 138(2):744-56. PubMed ID: 15908605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa.
    Wei LQ; Xu WY; Deng ZY; Su Z; Xue Y; Wang T
    BMC Genomics; 2010 May; 11():338. PubMed ID: 20507633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis.
    Wang Y; Zhang WZ; Song LF; Zou JJ; Su Z; Wu WH
    Plant Physiol; 2008 Nov; 148(3):1201-11. PubMed ID: 18775970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional regulation of secondary growth in Arabidopsis thaliana.
    Oh S; Park S; Han KH
    J Exp Bot; 2003 Dec; 54(393):2709-22. PubMed ID: 14585825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome analysis of haploid male gametophyte development in Arabidopsis.
    Honys D; Twell D
    Genome Biol; 2004; 5(11):R85. PubMed ID: 15535861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative transcriptomics of Arabidopsis sperm cells.
    Borges F; Gomes G; Gardner R; Moreno N; McCormick S; Feijó JA; Becker JD
    Plant Physiol; 2008 Oct; 148(2):1168-81. PubMed ID: 18667720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis.
    Hafidh S; Breznenová K; Růžička P; Feciková J; Capková V; Honys D
    BMC Plant Biol; 2012 Feb; 12():24. PubMed ID: 22340370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ARID-HMG DNA-binding protein AtHMGB15 is required for pollen tube growth in Arabidopsis thaliana.
    Xia C; Wang YJ; Liang Y; Niu QK; Tan XY; Chu LC; Chen LQ; Zhang XQ; Ye D
    Plant J; 2014 Sep; 79(5):741-56. PubMed ID: 24923357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-seq of Arabidopsis pollen uncovers novel transcription and alternative splicing.
    Loraine AE; McCormick S; Estrada A; Patel K; Qin P
    Plant Physiol; 2013 Jun; 162(2):1092-109. PubMed ID: 23590974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole genome analysis of gene expression reveals coordinated activation of signaling and metabolic pathways during pollen-pistil interactions in Arabidopsis.
    Boavida LC; Borges F; Becker JD; Feijó JA
    Plant Physiol; 2011 Apr; 155(4):2066-80. PubMed ID: 21317340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic expression profiling of mature soybean (Glycine max) pollen.
    Haerizadeh F; Wong CE; Bhalla PL; Gresshoff PM; Singh MB
    BMC Plant Biol; 2009 Mar; 9():25. PubMed ID: 19265555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arabidopsis ACA7, encoding a putative auto-regulated Ca(2+)-ATPase, is required for normal pollen development.
    Lucca N; León G
    Plant Cell Rep; 2012 Apr; 31(4):651-9. PubMed ID: 22044965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of the Arabidopsis pollen transcriptome.
    Honys D; Twell D
    Plant Physiol; 2003 Jun; 132(2):640-52. PubMed ID: 12805594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Arabidopsis eukaryotic translation initiation factor 3, subunit F (AteIF3f), is required for pollen germination and embryogenesis.
    Xia C; Wang YJ; Li WQ; Chen YR; Deng Y; Zhang XQ; Chen LQ; Ye D
    Plant J; 2010 Jul; 63(2):189-202. PubMed ID: 20444226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Profiling of translatomes of in vivo-grown pollen tubes reveals genes with roles in micropylar guidance during pollination in Arabidopsis.
    Lin SY; Chen PW; Chuang MH; Juntawong P; Bailey-Serres J; Jauh GY
    Plant Cell; 2014 Feb; 26(2):602-18. PubMed ID: 24532595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of polypyrimidine tract-binding protein (PTB)-related proteins in pollen germination in Arabidopsis.
    Wang S; Okamoto T
    Plant Cell Physiol; 2009 Feb; 50(2):179-90. PubMed ID: 19122186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AtTMEM18 plays important roles in pollen tube and vegetative growth in Arabidopsis.
    Dou XY; Yang KZ; Ma ZX; Chen LQ; Zhang XQ; Bai JR; Ye D
    J Integr Plant Biol; 2016 Jul; 58(7):679-92. PubMed ID: 26699939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis.
    Czechowski T; Stitt M; Altmann T; Udvardi MK; Scheible WR
    Plant Physiol; 2005 Sep; 139(1):5-17. PubMed ID: 16166256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed.
    Nakabayashi K; Okamoto M; Koshiba T; Kamiya Y; Nambara E
    Plant J; 2005 Mar; 41(5):697-709. PubMed ID: 15703057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.