These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 14500889)

  • 41. Substrate specificity of the lipase from Candida parapsilosis.
    Briand D; Dubreucq E; Grimaud J; Galzy P
    Lipids; 1995 Aug; 30(8):747-54. PubMed ID: 7475991
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biochemical characterization of a novel lipase from Malbranchea cinnamomea suitable for production of lipolyzed milkfat flavor and biodegradation of phthalate esters.
    Duan X; Xiang M; Wang L; Yan Q; Yang S; Jiang Z
    Food Chem; 2019 Nov; 297():124925. PubMed ID: 31253266
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of the conformational flexibility on the kinetics and dimerisation process of two Candida rugosa lipase isoenzymes.
    Pernas MA; López C; Rúa ML; Hermoso J
    FEBS Lett; 2001 Jul; 501(1):87-91. PubMed ID: 11457462
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Codon optimization of Candida rugosa lip1 gene for improving expression in Pichia pastoris and biochemical characterization of the purified recombinant LIP1 lipase.
    Chang SW; Lee GC; Shaw JF
    J Agric Food Chem; 2006 Feb; 54(3):815-22. PubMed ID: 16448188
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Variability within the Candida rugosa lipases family.
    Lotti M; Tramontano A; Longhi S; Fusetti F; Brocca S; Pizzi E; Alberghina L
    Protein Eng; 1994 Apr; 7(4):531-5. PubMed ID: 8029208
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inhibition of yeast lipase (CRL1) and cholesterol esterase (CRL3) by 6-chloro-2-pyrones: comparison with porcine cholesterol esterase.
    Stoddard Hatch M; Brown WM; Deck JA; Hunsaker LA; Deck LM; Vander Jagt DL
    Biochim Biophys Acta; 2002 Apr; 1596(2):381-91. PubMed ID: 12007617
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Monobody-Mediated Alteration of Lipase Substrate Specificity.
    Tanaka SI; Takahashi T; Koide A; Iwamoto R; Koikeda S; Koide S
    ACS Chem Biol; 2018 Jun; 13(6):1487-1492. PubMed ID: 29757606
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mutants provide evidence of the importance of glycosydic chains in the activation of lipase 1 from Candida rugosa.
    Brocca S; Persson M; Wehtje E; Adlercreutz P; Alberghina L; Lotti M
    Protein Sci; 2000 May; 9(5):985-90. PubMed ID: 10850808
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modulation of the thermostability and substrate specificity of Candida rugosa lipase1 by altering the acyl-binding residue Gly414 at the α-helix-connecting bend.
    Zhang X; Zhang Y; Yang G; Xie Y; Xu L; An J; Cui L; Feng Y
    Enzyme Microb Technol; 2016 Jan; 82():34-41. PubMed ID: 26672446
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The open lid mediates pancreatic lipase function.
    Yang Y; Lowe ME
    J Lipid Res; 2000 Jan; 41(1):48-57. PubMed ID: 10627501
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Insights from molecular dynamics simulations into pH-dependent enantioselective hydrolysis of ibuprofen esters by Candida rugosa lipase.
    James JJ; Lakshmi BS; Raviprasad V; Ananth MJ; Kangueane P; Gautam P
    Protein Eng; 2003 Dec; 16(12):1017-24. PubMed ID: 14983082
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Expression in Pichia pastoris of Candida antarctica lipase B and lipase B fused to a cellulose-binding domain.
    Rotticci-Mulder JC; Gustavsson M; Holmquist M; Hult K; Martinelle M
    Protein Expr Purif; 2001 Apr; 21(3):386-92. PubMed ID: 11281712
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Blocking the tunnel: engineering of Candida rugosa lipase mutants with short chain length specificity.
    Schmitt J; Brocca S; Schmid RD; Pleiss J
    Protein Eng; 2002 Jul; 15(7):595-601. PubMed ID: 12200542
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design and realization of a tailor-made enzyme to modify the molecular recognition of 2-arylpropionic esters by Candida rugosa lipase.
    Manetti F; Mileto D; Corelli F; Soro S; Palocci C; Cernia E; D'Acquarica I; Lotti M; Alberghina L; Botta M
    Biochim Biophys Acta; 2000 Nov; 1543(1):146-58. PubMed ID: 11087950
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-yield synthesis of wax esters catalysed by modified Candida rugosa lipase.
    Guncheva MH; Zhiryakova D
    Biotechnol Lett; 2008 Mar; 30(3):509-12. PubMed ID: 17957342
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Role of Solvent-Accessible Leu-208 of Cold-Active Pseudomonas fluorescens Strain AMS8 Lipase in Interfacial Activation, Substrate Accessibility and Low-Molecular Weight Esterification in the Presence of Toluene.
    Yaacob N; Ahmad Kamarudin NH; Leow ATC; Salleh AB; Raja Abd Rahman RNZ; Mohamad Ali MS
    Molecules; 2017 Aug; 22(8):. PubMed ID: 28805665
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Human lipoprotein lipase: the loop covering the catalytic site is essential for interaction with lipid substrates.
    Dugi KA; Dichek HL; Talley GD; Brewer HB; Santamarina-Fojo S
    J Biol Chem; 1992 Dec; 267(35):25086-91. PubMed ID: 1460010
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid.
    Piamtongkam R; Duquesne S; Bordes F; Barbe S; André I; Marty A; Chulalaksananukul W
    Biotechnol Bioeng; 2011 Aug; 108(8):1749-56. PubMed ID: 21391204
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Substrate specificity of Staphylococcus hyicus lipase and Staphylococcus aureus lipase as studied by in vivo chimeragenesis.
    van Kampen MD; Dekker N; Egmond MR; Verheij HM
    Biochemistry; 1998 Mar; 37(10):3459-66. PubMed ID: 9521667
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure of uncomplexed and linoleate-bound Candida cylindracea cholesterol esterase.
    Ghosh D; Wawrzak Z; Pletnev VZ; Li N; Kaiser R; Pangborn W; Jörnvall H; Erman M; Duax WL
    Structure; 1995 Mar; 3(3):279-88. PubMed ID: 7788294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.