BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 14501454)

  • 21. Design and fabrication of multichannel cochlear implants for animal research.
    Rebscher SJ; Hetherington AM; Snyder RL; Leake PA; Bonham BH
    J Neurosci Methods; 2007 Oct; 166(1):1-12. PubMed ID: 17727956
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of electrically evoked whole-nerve action potential and electrically evoked auditory brainstem response thresholds in nucleus CI24R cochlear implant recipients.
    Hay-McCutcheon MJ; Brown CJ; Clay KS; Seyle K
    J Am Acad Audiol; 2002 Sep; 13(8):416-27. PubMed ID: 12371659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of cochlear implant electrode array design on auditory nerve and behavioral response in children.
    Telmesani LM; Said NM
    Int J Pediatr Otorhinolaryngol; 2015 May; 79(5):660-5. PubMed ID: 25746517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective activation of cat primary auditory cortex by way of direct intraneural auditory nerve stimulation.
    Kim SJ; Badi AN; Normann RA
    Laryngoscope; 2007 Jun; 117(6):1053-62. PubMed ID: 17545868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrically evoked auditory brainstem responses in adults and children: effects of lateral to medial placement of the nucleus 24 contour electrode array.
    Runge-Samuelson C; Firszt JB; Gaggl W; Wackym PA
    Otol Neurotol; 2009 Jun; 30(4):464-70. PubMed ID: 19300297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrode independence in intraneural cochlear nerve stimulation.
    Badi AN; Owa AO; Shelton C; Normann RA
    Otol Neurotol; 2007 Jan; 28(1):16-24. PubMed ID: 17195741
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characteristics of electrically evoked auditory brainstem responses in patients with cochlear nerve canal stenosis receiving cochlear implants.
    Wang Z; Liu Y; Wang L; Shen X; Han S; Wang W; Gao F; Liang W; Peng KA
    Int J Pediatr Otorhinolaryngol; 2018 Jan; 104():98-103. PubMed ID: 29287891
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neurophysiology of cochlear implant users I: effects of stimulus current level and electrode site on the electrical ABR, MLR, and N1-P2 response.
    Firszt JB; Chambers RD; Kraus And N; Reeder RM
    Ear Hear; 2002 Dec; 23(6):502-15. PubMed ID: 12476088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stimulation of the facial nerve by intracochlear electrodes in otosclerosis: a computer modeling study.
    Frijns JH; Kalkman RK; Briaire JJ
    Otol Neurotol; 2009 Dec; 30(8):1168-74. PubMed ID: 19574948
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrophysiologic effects of placing cochlear implant electrodes in a perimodiolar position in young children.
    Wackym PA; Firszt JB; Gaggl W; Runge-Samuelson CL; Reeder RM; Raulie JC
    Laryngoscope; 2004 Jan; 114(1):71-6. PubMed ID: 14709998
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Auditory brainstem activity and development evoked by apical versus basal cochlear implant electrode stimulation in children.
    Gordon KA; Papsin BC; Harrison RV
    Clin Neurophysiol; 2007 Aug; 118(8):1671-84. PubMed ID: 17588811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance of multisite silicon microprobes implanted chronically in the ventral cochlear nucleus of the cat.
    McCreery D; Lossinsky A; Pikov V
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1042-52. PubMed ID: 17554823
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple-channel stimulation of the cochlear nucleus.
    Evans DE; Niparko JK; Miller JM; Jyung RW; Anderson DJ
    Otolaryngol Head Neck Surg; 1989 Dec; 101(6):651-7. PubMed ID: 2512553
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Packing of the cochleostomy site affects auditory nerve response thresholds in precurved off-stylet cochlear implants.
    Gordin A; Papsin B; Gordon K
    Otol Neurotol; 2010 Feb; 31(2):204-9. PubMed ID: 20101160
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impedance Changes and Fibrous Tissue Growth after Cochlear Implantation Are Correlated and Can Be Reduced Using a Dexamethasone Eluting Electrode.
    Wilk M; Hessler R; Mugridge K; Jolly C; Fehr M; Lenarz T; Scheper V
    PLoS One; 2016; 11(2):e0147552. PubMed ID: 26840740
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From nucleus 24 to 513: changing cochlear implant design affects auditory response thresholds.
    Gordon KA; Papsin BC
    Otol Neurotol; 2013 Apr; 34(3):436-42. PubMed ID: 23370566
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of focused multipolar stimulation for cochlear implants: a preclinical safety study.
    Shepherd RK; Wise AK; Enke YL; Carter PM; Fallon JB
    J Neural Eng; 2017 Aug; 14(4):046020. PubMed ID: 28607224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of an electrode for the artificial cochlear sensory epithelium.
    Tona Y; Inaoka T; Ito J; Kawano S; Nakagawa T
    Hear Res; 2015 Dec; 330(Pt A):106-12. PubMed ID: 26299844
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Behavioral and electrophysiological responses to electrical stimulation in the cat. I. Absolute thresholds.
    Smith DW; Finley CC; van den Honert C; Olszyk VB; Konrad KE
    Hear Res; 1994 Dec; 81(1-2):1-10. PubMed ID: 7737916
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication and evaluation of an improved polymer-based cochlear electrode array for atraumatic insertion.
    Gwon TM; Min KS; Kim JH; Oh SH; Lee HS; Park MH; Kim SJ
    Biomed Microdevices; 2015 Apr; 17(2):32. PubMed ID: 25681972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.