BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 14502106)

  • 1. Metformin inhibition of glycation processes.
    Beisswenger P; Ruggiero-Lopez D
    Diabetes Metab; 2003 Sep; 29(4 Pt 2):6S95-103. PubMed ID: 14502106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation.
    Ruggiero-Lopez D; Lecomte M; Moinet G; Patereau G; Lagarde M; Wiernsperger N
    Biochem Pharmacol; 1999 Dec; 58(11):1765-73. PubMed ID: 10571251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dicarbonyls and Advanced Glycation End-Products in the Development of Diabetic Complications and Targets for Intervention.
    Brings S; Fleming T; Freichel M; Muckenthaler MU; Herzig S; Nawroth PP
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28475116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metformin attenuates myocardium dicarbonyl stress induced by chronic hypertriglyceridemia.
    Malinska H; Škop V; Trnovska J; Markova I; Svoboda P; Kazdova L; Haluzik M
    Physiol Res; 2018 May; 67(2):181-189. PubMed ID: 29137475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Diabetes mellitus, oxidative stress and advanced glycation endproducts].
    Bonnefont-Rousselot D; Beaudeux JL; Thérond P; Peynet J; Legrand A; Delattre J
    Ann Pharm Fr; 2004 May; 62(3):147-57. PubMed ID: 15243348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemistry and pathobiology of advanced glycation end products.
    Schleicher ED; Bierhaus A; Häring HU; Nawroth PP; Lehmann R
    Contrib Nephrol; 2001; (131):1-9. PubMed ID: 11125554
    [No Abstract]   [Full Text] [Related]  

  • 7. Methylglyoxal in diabetes: link to treatment, glycaemic control and biomarkers of complications.
    Beisswenger PJ
    Biochem Soc Trans; 2014 Apr; 42(2):450-6. PubMed ID: 24646259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metformin reduces systemic methylglyoxal levels in type 2 diabetes.
    Beisswenger PJ; Howell SK; Touchette AD; Lal S; Szwergold BS
    Diabetes; 1999 Jan; 48(1):198-202. PubMed ID: 9892243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on mechanism of inhibition of advanced glycation end products formation by plant derived polyphenolic compounds.
    Anwar S; Khan S; Almatroudi A; Khan AA; Alsahli MA; Almatroodi SA; Rahmani AH
    Mol Biol Rep; 2021 Jan; 48(1):787-805. PubMed ID: 33389535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting advanced glycation with pharmaceutical agents: where are we now?
    Borg DJ; Forbes JM
    Glycoconj J; 2016 Aug; 33(4):653-70. PubMed ID: 27392438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha-Synuclein Glycation and the Action of Anti-Diabetic Agents in Parkinson's Disease.
    König A; Vicente Miranda H; Outeiro TF
    J Parkinsons Dis; 2018; 8(1):33-43. PubMed ID: 29480231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycative stress from advanced glycation end products (AGEs) and dicarbonyls: An emerging biological factor in cancer onset and progression.
    Lin JA; Wu CH; Lu CC; Hsia SM; Yen GC
    Mol Nutr Food Res; 2016 Aug; 60(8):1850-64. PubMed ID: 26774083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dicarbonyls Generation, Toxicities, Detoxifications and Potential Roles in Diabetes Complications.
    Alouffi S; Khan MWA
    Curr Protein Pept Sci; 2020; 21(9):890-898. PubMed ID: 31660813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3-Deoxyglucosone: a potential glycating agent accountable for structural alteration in H3 histone protein through generation of different AGEs.
    Ashraf JM; Ahmad S; Rabbani G; Hasan Q; Jan AT; Lee EJ; Khan RH; Alam K; Choi I
    PLoS One; 2015; 10(2):e0116804. PubMed ID: 25689368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methylglyoxal and Advanced Glycation End Products in Patients with Diabetes - What We Know so Far and the Missing Links.
    Groener JB; Oikonomou D; Cheko R; Kender Z; Zemva J; Kihm L; Muckenthaler M; Peters V; Fleming T; Kopf S; Nawroth PP
    Exp Clin Endocrinol Diabetes; 2019 Sep; 127(8):497-504. PubMed ID: 28407670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effect of metformin and pyridoxamine in the formation of early, intermediate and advanced glycation end-products.
    Ahmad S; Shahab U; Baig MH; Khan MS; Khan MS; Srivastava AK; Saeed M; Moinuddin
    PLoS One; 2013; 8(9):e72128. PubMed ID: 24023728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Antioxidant and anti-AGE therapeutics: evaluation and perspectives].
    Bonnefont-Rousselot D
    J Soc Biol; 2001; 195(4):391-8. PubMed ID: 11938556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. alpha-Dicarbonyls increase in the postprandial period and reflect the degree of hyperglycemia.
    Beisswenger PJ; Howell SK; O'Dell RM; Wood ME; Touchette AD; Szwergold BS
    Diabetes Care; 2001 Apr; 24(4):726-32. PubMed ID: 11315838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved glycemic control induced by both metformin and repaglinide is associated with a reduction in blood levels of 3-deoxyglucosone in nonobese patients with type 2 diabetes.
    Engelen L; Lund SS; Ferreira I; Tarnow L; Parving HH; Gram J; Winther K; Pedersen O; Teerlink T; Barto R; Stehouwer CD; Vaag AA; Schalkwijk CG
    Eur J Endocrinol; 2011 Mar; 164(3):371-9. PubMed ID: 21205874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skin beautification with oral non-hydrolized versions of carnosine and carcinine: Effective therapeutic management and cosmetic skincare solutions against oxidative glycation and free-radical production as a causal mechanism of diabetic complications and skin aging.
    Babizhayev MA; Deyev AI; Savel'yeva EL; Lankin VZ; Yegorov YE
    J Dermatolog Treat; 2012 Oct; 23(5):345-84. PubMed ID: 21756141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.