These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 14502499)

  • 21. Prediction of non-ideal behavior of polarity/polarizability scales of solvent mixtures by integration of a novel COSMO-RS molecular descriptor and neural networks.
    Palomar J; Torrecilla JS; Lemus J; Ferro VR; Rodríguez F
    Phys Chem Chem Phys; 2008 Oct; 10(39):5967-75. PubMed ID: 18825284
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methods for applying the quantitative structure-activity relationship paradigm.
    Esposito EX; Hopfinger AJ; Madura JD
    Methods Mol Biol; 2004; 275():131-214. PubMed ID: 15141113
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecule kernels: a descriptor- and alignment-free quantitative structure-activity relationship approach.
    Mohr JA; Jain BJ; Obermayer K
    J Chem Inf Model; 2008 Sep; 48(9):1868-81. PubMed ID: 18767832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. QSAR model for predicting pesticide aquatic toxicity.
    Mazzatorta P; Smiesko M; Lo Piparo E; Benfenati E
    J Chem Inf Model; 2005; 45(6):1767-74. PubMed ID: 16309283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SAR and QSAR modeling of endocrine disruptors.
    Devillers J; Marchand-Geneste N; Carpy A; Porcher JM
    SAR QSAR Environ Res; 2006 Aug; 17(4):393-412. PubMed ID: 16920661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical-biological interactions in human.
    Verma RP; Kurup A; Mekapati SB; Hansch C
    Bioorg Med Chem; 2005 Feb; 13(4):933-48. PubMed ID: 15670902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A structure-information approach to the prediction of biological activities and properties.
    Hall LH
    Chem Biodivers; 2004 Jan; 1(1):183-201. PubMed ID: 17191786
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative structure activity relationship (QSAR) for toxicity of chlorophenols on L929 cells in vitro.
    Liu X; Chen J; Yu H; Zhao J; Giesy JP; Wang X
    Chemosphere; 2006 Sep; 64(10):1619-26. PubMed ID: 16790261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A conceptual framework for predicting the toxicity of reactive chemicals: modeling soft electrophilicity.
    Schultz TW; Carlson RE; Cronin MT; Hermens JL; Johnson R; O'Brien PJ; Roberts DW; Siraki A; Wallace KB; Veith GD
    SAR QSAR Environ Res; 2006 Aug; 17(4):413-28. PubMed ID: 16920662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection.
    Tetko IV; Sushko I; Pandey AK; Zhu H; Tropsha A; Papa E; Oberg T; Todeschini R; Fourches D; Varnek A
    J Chem Inf Model; 2008 Sep; 48(9):1733-46. PubMed ID: 18729318
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing how well a modeling protocol captures a structure-activity landscape.
    Guha R; Van Drie JH
    J Chem Inf Model; 2008 Aug; 48(8):1716-28. PubMed ID: 18686944
    [TBL] [Abstract][Full Text] [Related]  

  • 32. QSAR study on thiazole and thiadiazole analogues as antagonists for the adenosine A1 and A3 receptors.
    Borghini A; Pietra D; Domenichelli P; Bianucci AM
    Bioorg Med Chem; 2005 Sep; 13(18):5330-7. PubMed ID: 15990318
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polarizability: a promising descriptor to study chemical-biological interactions.
    Tandon H; Ranjan P; Chakraborty T; Suhag V
    Mol Divers; 2021 Feb; 25(1):249-262. PubMed ID: 32146657
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Local and global quantitative structure-activity relationship modeling and prediction for the baseline toxicity.
    Yuan H; Wang Y; Cheng Y
    J Chem Inf Model; 2007; 47(1):159-69. PubMed ID: 17238261
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Top-priority fragment QSAR approach in predicting pesticide aquatic toxicity.
    Casalegno M; Sello G; Benfenati E
    Chem Res Toxicol; 2006 Nov; 19(11):1533-9. PubMed ID: 17112242
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting MDCK cell permeation coefficients of organic molecules using membrane-interaction QSAR analysis.
    Chen LL; Yao J; Yang JB; Yang J
    Acta Pharmacol Sin; 2005 Nov; 26(11):1322-33. PubMed ID: 16225754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. QSAR study on tadpole narcosis using PI index: a case of heterogenous set of compounds.
    Jaiswal M; Khadikar P
    Bioorg Med Chem; 2004 Apr; 12(7):1731-6. PubMed ID: 15028264
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of predictive QSAR models to database mining: identification and experimental validation of novel anticonvulsant compounds.
    Shen M; Béguin C; Golbraikh A; Stables JP; Kohn H; Tropsha A
    J Med Chem; 2004 Apr; 47(9):2356-64. PubMed ID: 15084134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. QSAR models based on quantum topological molecular similarity.
    Popelier PL; Smith PJ
    Eur J Med Chem; 2006 Jul; 41(7):862-73. PubMed ID: 16697489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In silico-aided prediction of biological properties of chemicals: oestrogen receptor-mediated effects.
    Roncaglioni A; Benfenati E
    Chem Soc Rev; 2008 Mar; 37(3):441-50. PubMed ID: 18224255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.