BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 14502504)

  • 1. Drugs and nondrugs: an effective discrimination with topological methods and artificial neural networks.
    Murcia-Soler M; Pérez-Giménez F; García-March FJ; Salabert-Salvador MT; Díaz-Villanueva W; Castro-Bleda MJ
    J Chem Inf Comput Sci; 2003; 43(5):1688-702. PubMed ID: 14502504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial neural networks and linear discriminant analysis: a valuable combination in the selection of new antibacterial compounds.
    Murcia-Soler M; Pérez-Giménez F; García-March FJ; Salabert-Salvador MT; Díaz-Villanueva W; Castro-Bleda MJ; Villanueva-Pareja A
    J Chem Inf Comput Sci; 2004; 44(3):1031-41. PubMed ID: 15154772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A scoring scheme for discriminating between drugs and nondrugs.
    Sadowski J; Kubinyi H
    J Med Chem; 1998 Aug; 41(18):3325-9. PubMed ID: 9719584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using general regression and probabilistic neural networks to predict human intestinal absorption with topological descriptors derived from two-dimensional chemical structures.
    Niwa T
    J Chem Inf Comput Sci; 2003; 43(1):113-9. PubMed ID: 12546543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can we learn to distinguish between "drug-like" and "nondrug-like" molecules?
    Ajay A; Walters WP; Murcko MA
    J Med Chem; 1998 Aug; 41(18):3314-24. PubMed ID: 9719583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A neural network based classification scheme for cytotoxicity predictions:Validation on 30,000 compounds.
    Molnár L; Keseru GM; Papp A; Lorincz Z; Ambrus G; Darvas F
    Bioorg Med Chem Lett; 2006 Feb; 16(4):1037-9. PubMed ID: 16288868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial neural networks analysis used to evaluate the molecular interactions between selected drugs and human alpha1-acid glycoprotein.
    Buciński A; Wnuk M; Goryński K; Giza A; Kochańczyk J; Nowaczyk A; Baczek T; Nasal A
    J Pharm Biomed Anal; 2009 Nov; 50(4):591-6. PubMed ID: 19117712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification.
    Byvatov E; Fechner U; Sadowski J; Schneider G
    J Chem Inf Comput Sci; 2003; 43(6):1882-9. PubMed ID: 14632437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model-free drug-likeness from fragments.
    Ursu O; Oprea TI
    J Chem Inf Model; 2010 Aug; 50(8):1387-94. PubMed ID: 20726597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "In-house likeness": comparison of large compound collections using artificial neural networks.
    Muresan S; Sadowski J
    J Chem Inf Model; 2005; 45(4):888-93. PubMed ID: 16045282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of dopamine antagonists using TFS-based artificial neural network.
    Fujishima S; Takahashi Y
    J Chem Inf Comput Sci; 2004; 44(3):1006-9. PubMed ID: 15154769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting blood-brain barrier penetration of drugs using an artificial neural network.
    Fu XC; Wang GP; Liang WQ; Yu QS
    Pharmazie; 2004 Feb; 59(2):126-30. PubMed ID: 15025181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive activity profiling of drugs by topological-fragment-spectra-based support vector machines.
    Kawai K; Fujishima S; Takahashi Y
    J Chem Inf Model; 2008 Jun; 48(6):1152-60. PubMed ID: 18533712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico log P prediction for a large data set with support vector machines, radial basis neural networks and multiple linear regression.
    Chen HF
    Chem Biol Drug Des; 2009 Aug; 74(2):142-7. PubMed ID: 19549084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ANN-QSAR model of drug-binding to human serum albumin.
    Deeb O; Hemmateenejad B
    Chem Biol Drug Des; 2007 Jul; 70(1):19-29. PubMed ID: 17630991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Descriptors, physical properties, and drug-likeness.
    Brüstle M; Beck B; Schindler T; King W; Mitchell T; Clark T
    J Med Chem; 2002 Aug; 45(16):3345-55. PubMed ID: 12139446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting sorption of pharmaceuticals and personal care products onto soil and digested sludge using artificial neural networks.
    Barron L; Havel J; Purcell M; Szpak M; Kelleher B; Paull B
    Analyst; 2009 Apr; 134(4):663-70. PubMed ID: 19305914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of serum protein fingerprinting coupled with artificial neural network model in diagnosis of hepatocellular carcinoma.
    Wang JX; Zhang B; Yu JK; Liu J; Yang MQ; Zheng S
    Chin Med J (Engl); 2005 Aug; 118(15):1278-84. PubMed ID: 16117882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices.
    Pan Y; Jiang J; Wang R; Cao H; Zhao J
    J Hazard Mater; 2008 Sep; 157(2-3):510-7. PubMed ID: 18280036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative QSAR- and fragments distribution analysis of drugs, druglikes, metabolic substances, and antimicrobial compounds.
    Karakoc E; Sahinalp SC; Cherkasov A
    J Chem Inf Model; 2006; 46(5):2167-82. PubMed ID: 16995747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.