These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 14502583)

  • 1. Application of a toxicity identification evaluation for a sample of effluent discharged from a dyeing factory in Hong Kong.
    Chan YK; Wong CK; Hsieh DP; Ng SP; Lau TK; Wong PK
    Environ Toxicol; 2003 Oct; 18(5):312-6. PubMed ID: 14502583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity identification evaluation (TIE) of pore water of contaminated marine sediments collected from Hong Kong waters.
    Kwok YC; Hsieh DP; Wong PK
    Mar Pollut Bull; 2005; 51(8-12):1085-91. PubMed ID: 16023143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity identification and reduction of wastewaters from a pigment manufacturing factory.
    Jo HJ; Park EJ; Cho K; Kim EH; Jung J
    Chemosphere; 2008 Jan; 70(6):949-57. PubMed ID: 17892894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of low-purity Fenton reagents on toxicity of textile dyeing effluent to Daphnia magna.
    Na J; Yoo J; Nam G; Jung J
    Environ Sci Process Impacts; 2017 Sep; 19(9):1169-1175. PubMed ID: 28703816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri.
    Wang C; Yediler A; Lienert D; Wang Z; Kettrup A
    Chemosphere; 2002 Jan; 46(2):339-44. PubMed ID: 11827294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of anaerobic process on toxicity reduction during treating printing and dyeing wastewater.
    Wang J; Zhang ZJ; Chi LN; Qiao XL; Zhu HX; Long MC; Zhang ZF
    Bull Environ Contam Toxicol; 2007 Jun; 78(6):531-4. PubMed ID: 17619802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical treatment of textile dyes and dyehouse effluents.
    Chatzisymeon E; Xekoukoulotakis NP; Coz A; Kalogerakis N; Mantzavinos D
    J Hazard Mater; 2006 Sep; 137(2):998-1007. PubMed ID: 16713087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute toxicity assessment of textile dyes and textile and dye industrial effluents using Daphnia magna bioassay.
    Verma Y
    Toxicol Ind Health; 2008 Aug; 24(7):491-500. PubMed ID: 19028775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of xenobiotics originating from the textile preparation, dyeing, and finishing industry using ozonation and advanced oxidation.
    Arslan-Alaton I; Alaton I
    Ecotoxicol Environ Saf; 2007 Sep; 68(1):98-107. PubMed ID: 17178160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The development of marine Toxicity Identification Evaluation (TIE) procedures using the unicellular alga Nitzschia closterium.
    Hogan AC; Stauber JL; Pablo F; Adams MS; Lim RP
    Arch Environ Contam Toxicol; 2005 May; 48(4):433-43. PubMed ID: 15883677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decolorization of a dye industry effluent by Aspergillus fumigatus XC6.
    Jin XC; Liu GQ; Xu ZH; Tao WY
    Appl Microbiol Biotechnol; 2007 Feb; 74(1):239-43. PubMed ID: 17086413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of colorants in nylon flock dyeing effluent.
    Fan Q; Hoskote S; Hou Y
    J Hazard Mater; 2004 Aug; 112(1-2):123-31. PubMed ID: 15225938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent.
    Jadhav JP; Kalyani DC; Telke AA; Phugare SS; Govindwar SP
    Bioresour Technol; 2010 Jan; 101(1):165-73. PubMed ID: 19720521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity identification in metal plating effluent: implications in establishing effluent discharge limits using bioassays in Korea.
    Kim E; Jun YR; Jo HJ; Shim SB; Jung J
    Mar Pollut Bull; 2008; 57(6-12):637-44. PubMed ID: 18406429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of textile auxiliaries on the biodegradation of dyehouse effluent in activated sludge.
    Arslan Alaton I; Insel G; Eremektar G; Germirli Babuna F; Orhon D
    Chemosphere; 2006 Mar; 62(9):1549-57. PubMed ID: 16098558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity studies in a chemical dye production industry in Turkey.
    Sponza DT
    J Hazard Mater; 2006 Dec; 138(3):438-47. PubMed ID: 16950564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical oxidation of textile wastewater and its reuse.
    Mohan N; Balasubramanian N; Basha CA
    J Hazard Mater; 2007 Aug; 147(1-2):644-51. PubMed ID: 17336454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of wastewater effluents by small-scale biotests and a fractionation procedure.
    Pessala P; Schultz E; Nakari T; Joutti A; Herve S
    Ecotoxicol Environ Saf; 2004 Oct; 59(2):263-72. PubMed ID: 15327886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of Microtox to assess toxicity removal of industrial effluents from the industrial district of Camaçari (BA, Brazil).
    Araújo CV; Nascimento RB; Oliveira CA; Strotmann UJ; da Silva EM
    Chemosphere; 2005 Mar; 58(9):1277-81. PubMed ID: 15667847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of immobilized bitter gourd (Momordica charantia) peroxidases in the decolorization and removal of textile dyes from polluted wastewater and dyeing effluent.
    Akhtar S; Khan AA; Husain Q
    Chemosphere; 2005 Jul; 60(3):291-301. PubMed ID: 15924947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.