BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 14503620)

  • 1. The evolution of genomic base composition in bacteria.
    Haywood-Farmer E; Otto SP
    Evolution; 2003 Aug; 57(8):1783-92. PubMed ID: 14503620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic Legacies of Ancient Adaptation Illuminate GC-Content Evolution in Bacteria.
    Teng W; Liao B; Chen M; Shu W
    Microbiol Spectr; 2023 Feb; 11(1):e0214522. PubMed ID: 36511682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary jumps in bacterial GC content.
    Mahajan S; Agashe D
    G3 (Bethesda); 2022 Jul; 12(8):. PubMed ID: 35579351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring pattern and process: maximum-likelihood implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis.
    Galtier N; Gouy M
    Mol Biol Evol; 1998 Jul; 15(7):871-9. PubMed ID: 9656487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of the GC content of the substituted bases in bacterial core genomes.
    Bohlin J; Eldholm V; Brynildsrud O; Petterson JH; Alfsnes K
    BMC Genomics; 2018 Aug; 19(1):589. PubMed ID: 30081825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High guanine-cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes.
    Hurst LD; Merchant AR
    Proc Biol Sci; 2001 Mar; 268(1466):493-7. PubMed ID: 11296861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Base-compositional heterogeneity in the RAG1 locus among didelphid marsupials: implications for phylogenetic inference and the evolution of GC content.
    Gruber KF; Voss RS; Jansa SA
    Syst Biol; 2007 Feb; 56(1):83-96. PubMed ID: 17366139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple stochastic model describing genomic evolution over time of GC content in microbial symbionts.
    Bohlin J; Rose B; Brynildsrud O; Birgitte Freiesleben De Blasio
    J Theor Biol; 2020 Oct; 503():110389. PubMed ID: 32634385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic GC content drifts downward in most bacterial genomes.
    Ely B
    PLoS One; 2021; 16(5):e0244163. PubMed ID: 34038432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid compositions contribute to the proteins' evolution under the influence of their abundances and genomic GC content.
    Du MZ; Liu S; Zeng Z; Alemayehu LA; Wei W; Guo FB
    Sci Rep; 2018 May; 8(1):7382. PubMed ID: 29743515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The decline of isochores in mammals: an assessment of the GC content variation along the mammalian phylogeny.
    Belle EM; Duret L; Galtier N; Eyre-Walker A
    J Mol Evol; 2004 Jun; 58(6):653-60. PubMed ID: 15461422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating Evolutionary Rate Variation in Bacteria.
    Gibson B; Eyre-Walker A
    J Mol Evol; 2019 Dec; 87(9-10):317-326. PubMed ID: 31570957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional mutational pressure affects the amino acid composition and hydrophobicity of proteins in bacteria.
    Gu X; Hewett-Emmett D; Li WH
    Genetica; 1998; 102-103(1-6):383-91. PubMed ID: 9720290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A possible origin of newly-born bacterial genes: significance of GC-rich nonstop frame on antisense strand.
    Ikehara K; Amada F; Yoshida S; Mikata Y; Tanaka A
    Nucleic Acids Res; 1996 Nov; 24(21):4249-55. PubMed ID: 8932380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An evolution model for sequence length based on residue insertion-deletion independent of substitution: an application to the GC content in bacterial genomes.
    Lèbre S; Michel CJ
    Bull Math Biol; 2012 Aug; 74(8):1764-88. PubMed ID: 22644340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in phylogeny reconstruction from gene order and content data.
    Moret BM; Warnow T
    Methods Enzymol; 2005; 395():673-700. PubMed ID: 15865990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SINEs, evolution and genome structure in the opossum.
    Gu W; Ray DA; Walker JA; Barnes EW; Gentles AJ; Samollow PB; Jurka J; Batzer MA; Pollock DD
    Gene; 2007 Jul; 396(1):46-58. PubMed ID: 17442506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A likelihood method for detecting trait-dependent shifts in the rate of molecular evolution.
    Mayrose I; Otto SP
    Mol Biol Evol; 2011 Jan; 28(1):759-70. PubMed ID: 20961959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the relationship between evolutionary divergence and phylogenetic accuracy in AFLP data sets.
    García-Pereira MJ; Caballero A; Quesada H
    Mol Biol Evol; 2010 May; 27(5):988-1000. PubMed ID: 20026482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A maximum likelihood method for analyzing pseudogene evolution: implications for silent site evolution in humans and rodents.
    Bustamante CD; Nielsen R; Hartl DL
    Mol Biol Evol; 2002 Jan; 19(1):110-7. PubMed ID: 11752196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.