These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
664 related articles for article (PubMed ID: 14503655)
1. Structure and molecular organisation of the sarcoplasmic reticulum of skeletal muscle fibers. Sorrentino V; Gerli R Ital J Anat Embryol; 2003; 108(2):65-76. PubMed ID: 14503655 [TBL] [Abstract][Full Text] [Related]
2. [Molecular architecture of the sarcoplasmic reticulum and its role in the ECC]. Rigoard P; Buffenoir K; Wager M; Bauche S; Giot JP; Lapierre F Neurochirurgie; 2009 Mar; 55 Suppl 1():S83-91. PubMed ID: 19233437 [TBL] [Abstract][Full Text] [Related]
3. Regulation of the ryanodine receptor calcium release channel of the sarcoplasmic reticulum in skeletal muscle. Csernoch L Acta Physiol Hung; 1999; 86(2):77-97. PubMed ID: 10741867 [TBL] [Abstract][Full Text] [Related]
4. Control of muscle ryanodine receptor calcium release channels by proteins in the sarcoplasmic reticulum lumen. Beard NA; Wei L; Dulhunty AF Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):340-5. PubMed ID: 19278523 [TBL] [Abstract][Full Text] [Related]
5. Excitation-contraction coupling from the 1950s into the new millennium. Dulhunty AF Clin Exp Pharmacol Physiol; 2006 Sep; 33(9):763-72. PubMed ID: 16922804 [TBL] [Abstract][Full Text] [Related]
6. Immunogold-labeled L-type calcium channels are clustered in the surface plasma membrane overlying junctional sarcoplasmic reticulum in guinea-pig myocytes-implications for excitation-contraction coupling in cardiac muscle. Gathercole DV; Colling DJ; Skepper JN; Takagishi Y; Levi AJ; Severs NJ J Mol Cell Cardiol; 2000 Nov; 32(11):1981-94. PubMed ID: 11040103 [TBL] [Abstract][Full Text] [Related]
7. Regulation of excitation contraction coupling by insulin-like growth factor-1 in aging skeletal muscle. Delbono O J Nutr Health Aging; 2000; 4(3):162-4. PubMed ID: 10936903 [TBL] [Abstract][Full Text] [Related]
9. Role of the sarcoplasmic reticulum in regulating the activity-dependent expression of the glycogen phosphorylase gene in contractile skeletal muscle cells. Vali S; Carlsen R; Pessah I; Gorin F J Cell Physiol; 2000 Nov; 185(2):184-99. PubMed ID: 11025440 [TBL] [Abstract][Full Text] [Related]
10. Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene. Takeshima H; Iino M; Takekura H; Nishi M; Kuno J; Minowa O; Takano H; Noda T Nature; 1994 Jun; 369(6481):556-9. PubMed ID: 7515481 [TBL] [Abstract][Full Text] [Related]
11. Morphology and molecular composition of sarcoplasmic reticulum surface junctions in the absence of DHPR and RyR in mouse skeletal muscle. Felder E; Protasi F; Hirsch R; Franzini-Armstrong C; Allen PD Biophys J; 2002 Jun; 82(6):3144-9. PubMed ID: 12023238 [TBL] [Abstract][Full Text] [Related]
12. Does a lack of RyR3 make mammalian skeletal muscle EC coupling a 'spark-less' affair? Ward CW; Rodney GG J Physiol; 2008 Jan; 586(2):313-4. PubMed ID: 18192614 [No Abstract] [Full Text] [Related]
13. Sequential docking, molecular differentiation, and positioning of T-Tubule/SR junctions in developing mouse skeletal muscle. Takekura H; Flucher BE; Franzini-Armstrong C Dev Biol; 2001 Nov; 239(2):204-14. PubMed ID: 11784029 [TBL] [Abstract][Full Text] [Related]
14. Excitation-contraction coupling in isolated locomotor muscle fibres from the pelagic tunicate Doliolum which lack both sarcoplasmic reticulum and transverse tubular system. Inoue I; Tsutsui I; Bone Q J Comp Physiol B; 2002 Aug; 172(6):541-6. PubMed ID: 12192516 [TBL] [Abstract][Full Text] [Related]
15. Organization of junctional sarcoplasmic reticulum proteins in skeletal muscle fibers. Barone V; Randazzo D; Del Re V; Sorrentino V; Rossi D J Muscle Res Cell Motil; 2015 Dec; 36(6):501-15. PubMed ID: 26374336 [TBL] [Abstract][Full Text] [Related]
16. Calumenin, a multiple EF-hands Ca2+-binding protein, interacts with ryanodine receptor-1 in rabbit skeletal sarcoplasmic reticulum. Jung DH; Mo SH; Kim DH Biochem Biophys Res Commun; 2006 Apr; 343(1):34-42. PubMed ID: 16527250 [TBL] [Abstract][Full Text] [Related]
17. Dysfunction of store-operated calcium channel in muscle cells lacking mg29. Pan Z; Yang D; Nagaraj RY; Nosek TA; Nishi M; Takeshima H; Cheng H; Ma J Nat Cell Biol; 2002 May; 4(5):379-83. PubMed ID: 11988740 [TBL] [Abstract][Full Text] [Related]
18. Divergence in the behaviour of the dihydropyridine receptor in muscle. Lüttgau HC J Physiol; 2000 Aug; 526 Pt 3():469. PubMed ID: 10921999 [TBL] [Abstract][Full Text] [Related]
19. Correct targeting of dihydropyridine receptors and triadin in dyspedic mouse skeletal muscle in vivo. Takekura H; Franzini-Armstrong C Dev Dyn; 1999 Apr; 214(4):372-80. PubMed ID: 10213392 [TBL] [Abstract][Full Text] [Related]
20. Development of the excitation-contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils. Flucher BE; Takekura H; Franzini-Armstrong C Dev Biol; 1993 Nov; 160(1):135-47. PubMed ID: 8224530 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]