BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

671 related articles for article (PubMed ID: 14503655)

  • 61. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor.
    Takeshima H; Nishimura S; Matsumoto T; Ishida H; Kangawa K; Minamino N; Matsuo H; Ueda M; Hanaoka M; Hirose T
    Nature; 1989 Jun; 339(6224):439-45. PubMed ID: 2725677
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Disrupted T-tubular network accounts for asynchronous calcium release in MTM1-deficient skeletal muscle.
    Szentesi P; Dienes B; Kutchukian C; Czirjak T; Buj-Bello A; Jacquemond V; Csernoch L
    J Physiol; 2023 Jan; 601(1):99-121. PubMed ID: 36408764
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ca
    Kutchukian C; Szentesi P; Allard B; Buj-Bello A; Csernoch L; Jacquemond V
    Cell Calcium; 2019 Jun; 80():91-100. PubMed ID: 30999217
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [3H]Azidodantrolene: synthesis and use in identification of a putative skeletal muscle dantrolene binding site in sarcoplasmic reticulum.
    Palnitkar SS; Bin B; Jimenez LS; Morimoto H; Williams PG; Paul-Pletzer K; Parness J
    J Med Chem; 1999 Jun; 42(11):1872-80. PubMed ID: 10354395
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Alterations in the sarcoplasmic reticulum: a possible link to exercise-induced muscle damage.
    Byrd SK
    Med Sci Sports Exerc; 1992 May; 24(5):531-6. PubMed ID: 1569849
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Electrical properties of the transverse tubular system.
    Costantin LL
    Fed Proc; 1975 Apr; 34(5):1390-4. PubMed ID: 1123094
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The network of calcium regulation in muscle.
    Martonosi AN; Pikula S
    Acta Biochim Pol; 2003; 50(1):1-30. PubMed ID: 12673344
    [TBL] [Abstract][Full Text] [Related]  

  • 68. S100A1 binds to the calmodulin-binding site of ryanodine receptor and modulates skeletal muscle excitation-contraction coupling.
    Prosser BL; Wright NT; Hernãndez-Ochoa EO; Varney KM; Liu Y; Olojo RO; Zimmer DB; Weber DJ; Schneider MF
    J Biol Chem; 2008 Feb; 283(8):5046-57. PubMed ID: 18089560
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Basis of muscle contraction].
    Billeter R; Hoppeler H
    Schweiz Z Med Traumatol; 1994; (2):6-20. PubMed ID: 8049876
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Calcium and tension regulation in skinned skeletal muscle fibers.
    Reuben JP
    Fed Proc; 1982 May; 41(7):2225-31. PubMed ID: 6281079
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Three-dimensional organization of mammalian skeletal muscle membrane systems.
    Ogata T
    Ital J Anat Embryol; 2001; 106(2 Suppl 1):167-74. PubMed ID: 11729952
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Residual sarcoplasmic reticulum Ca2+ concentration after Ca2+ release in skeletal myofibers from young adult and old mice.
    Wang ZM; Tang S; Messi ML; Yang JJ; Delbono O
    Pflugers Arch; 2012 Apr; 463(4):615-24. PubMed ID: 22249494
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Molecular aspects of the excitation-contraction coupling in skeletal muscle.
    Iino M
    Jpn J Physiol; 1999 Aug; 49(4):325-33. PubMed ID: 10529492
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Fine structure of transverse tubules and the sarcoplasmic reticulum at the myotendinous junction of stretched muscle fibers of the rat.
    Sonoda M; Moriya H; Shimada Y
    Microsc Res Tech; 1993 Feb; 24(3):281-6. PubMed ID: 8431607
    [TBL] [Abstract][Full Text] [Related]  

  • 75. S165F mutation of junctophilin 2 affects Ca2+ signalling in skeletal muscle.
    Woo JS; Hwang JH; Ko JK; Weisleder N; Kim DH; Ma J; Lee EH
    Biochem J; 2010 Mar; 427(1):125-34. PubMed ID: 20095964
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Minor sarcoplasmic reticulum membrane components that modulate excitation-contraction coupling in striated muscles.
    Treves S; Vukcevic M; Maj M; Thurnheer R; Mosca B; Zorzato F
    J Physiol; 2009 Jul; 587(Pt 13):3071-9. PubMed ID: 19403606
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [High resolution fluorescence microscopy in combination with mathematical modelling. First evidence of sub-cellular anesthetic effects on Ca2+ sparks in situ].
    Uttenweiler D; Both M; Zink W; Sinner B; Martin E; Graf BM; Fink RH
    Anaesthesist; 2003 Feb; 52(2):162-8. PubMed ID: 12624702
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comparative ultrastructure of Ca2+ release units in skeletal and cardiac muscle.
    Franzini-Armstrong C; Protasi F; Ramesh V
    Ann N Y Acad Sci; 1998 Sep; 853():20-30. PubMed ID: 10603933
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Alternate disposition of tetrads in peripheral couplings of skeletal muscle.
    Franzini-Armstrong C; Kish JW
    J Muscle Res Cell Motil; 1995 Jun; 16(3):319-24. PubMed ID: 7560004
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A transverse tubule NADPH oxidase activity stimulates calcium release from isolated triads via ryanodine receptor type 1 S -glutathionylation.
    Hidalgo C; Sánchez G; Barrientos G; Aracena-Parks P
    J Biol Chem; 2006 Sep; 281(36):26473-82. PubMed ID: 16762927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.