BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 14503820)

  • 1. Interplay of chromatographic and electrophoretic processes in capillary electrochromatography.
    Rathore AS; McKeown AP; Euerby MR
    J Chromatogr A; 2003 Aug; 1010(1):105-11. PubMed ID: 14503820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of electrokinetic measurements for characterization of columns used in capillary electrochromatography.
    Rathore AS; Li Y; Wilkins J
    J Chromatogr A; 2005 Jun; 1079(1-2):299-306. PubMed ID: 16038316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physically adsorbed chiral stationary phase of avidin on monolithic silica column for capillary electrochromatography and capillary liquid chromatography.
    Liu Z; Otsuka K; Terabe S; Motokawa M; Tanaka N
    Electrophoresis; 2002 Sep; 23(17):2973-81. PubMed ID: 12207305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatographic and electrophoretic migration parameters in capillary electrochromatography.
    Rathore AS; Horváth C
    Electrophoresis; 2002 May; 23(9):1211-6. PubMed ID: 12007118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deconvolution of electrokinetic and chromatographic contributions to solute migration in stereoselective ion-exchange capillary electrochromatography on monolithic silica capillary columns.
    Preinerstorfer B; Lämmerhofer M; Hoffmann CV; Lubda D; Lindner W
    J Sep Sci; 2008 Sep; 31(16-17):3065-78. PubMed ID: 18428190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary electrochromatography of peptides on a neutral porous monolith with annular electroosmotic flow generation.
    Li Y; Xiang R; Horváth C; Wilkins JA
    Electrophoresis; 2004 Feb; 25(4-5):545-53. PubMed ID: 14981680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis and synthesis of the electrokinetic mass transport and adsorption mechanisms of a charged adsorbate in capillary electrochromatography systems employing charged adsorbent particles.
    Grimes BA; Liapis AI
    J Chromatogr A; 2001 Jun; 919(1):157-79. PubMed ID: 11459302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of a three-peptide separation by capillary electrochromatography, voltage-assisted liquid chromatography and nano-high-performance liquid chromatography.
    Szucs V; Freitag R
    J Chromatogr A; 2004 Jul; 1044(1-2):201-10. PubMed ID: 15354439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Migration behavior of weakly retained, charged analytes in voltage-assisted micro-high performance liquid chromatography.
    Channer B; Skellern GG; Euerby MR; McKeown AP; Rathore AS
    J Chromatogr A; 2005 Nov; 1095(1-2):172-9. PubMed ID: 16275298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of acidic compounds using capillary electrochromatography.
    Altria KD; Smith NW; Turnbull CH
    J Chromatogr B Biomed Sci Appl; 1998 Oct; 717(1-2):341-53. PubMed ID: 9832254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capillary electrochromatography with monolithic stationary phases: 1. Preparation of sulfonated stearyl acrylate monoliths and their electrochromatographic characterization with neutral and charged solutes.
    Bedair M; El Rassi Z
    Electrophoresis; 2002 Sep; 23(17):2938-48. PubMed ID: 12207302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stationary phases for capillary electrophoresis and capillary electrochromatography.
    Liu CY
    Electrophoresis; 2001; 22(4):612-28. PubMed ID: 11296916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study on separation of sulfonamides by capillary high-performance liquid chromatography and electrochromatography].
    Yang RF; Shi ZG; Feng YQ; Da SL
    Yao Xue Xue Bao; 2003 Feb; 38(2):129-32. PubMed ID: 12778749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation parameters via virtual migration distances in high-performance liquid chromatography, capillary zone electrophoresis and electrokinetic chromatography.
    Rathore AS; Horváth C
    J Chromatogr A; 1996 Sep; 743(2):231-46. PubMed ID: 8843657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Uncharged monolithic capillary column modified with an anionic surfactant in electrochromatography].
    Wu RA; Zou HF; Ye ML; Xiong BH; Ni JY
    Se Pu; 2001 May; 19(3):193-5. PubMed ID: 12541793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary electrochromatography for separation of peptides driven with electrophoretic mobility on monolithic column.
    Wu R; Zou H; Ye M; Lei Z; Ni J
    Anal Chem; 2001 Oct; 73(20):4918-23. PubMed ID: 11681467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capillary electrochromatography with physically and dynamically absorbed stationary phases.
    Zou H; Ye M
    Electrophoresis; 2000 Dec; 21(18):4073-95. PubMed ID: 11192125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of ionic polymers as stationary and pseudo-stationary phases in the separation of ions by capillary electrophoresis and capillary electrochromatography.
    Fritz JS; Breadmore MC; Hilder EF; Haddad PR
    J Chromatogr A; 2002 Jan; 942(1-2):11-32. PubMed ID: 11822376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of small peptides by electrochromatography on silica-based reversed phases and hydrophobic anion exchange phases.
    Steiner F; Scherer B
    Electrophoresis; 2005 May; 26(10):1996-2004. PubMed ID: 15852351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of retention behavior in capillary electrochromatography from chromatographic and electrophoretic data.
    Liu Z; Otsuka K; Terabe S
    J Chromatogr A; 2002 Jun; 959(1-2):241-53. PubMed ID: 12141549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.