These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 14504281)

  • 1. Molecular basis of ion selectivity, block, and rectification of the inward rectifier Kir3.1/Kir3.4 K(+) channel.
    Dibb KM; Rose T; Makary SY; Claydon TW; Enkvetchakul D; Leach R; Nichols CG; Boyett MR
    J Biol Chem; 2003 Dec; 278(49):49537-48. PubMed ID: 14504281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A difference in inward rectification and polyamine block and permeation between the Kir2.1 and Kir3.1/Kir3.4 K+ channels.
    Makary SM; Claydon TW; Enkvetchakul D; Nichols CG; Boyett MR
    J Physiol; 2005 Nov; 568(Pt 3):749-66. PubMed ID: 16109731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residues and mechanisms for slow activation and Ba2+ block of the cardiac muscarinic K+ channel, Kir3.1/Kir3.4.
    Lancaster MK; Dibb KM; Quinn CC; Leach R; Lee JK; Findlay JB; Boyett MR
    J Biol Chem; 2000 Nov; 275(46):35831-9. PubMed ID: 10956662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of extracellular cations on the inward rectifying K+ channels Kir2.1 and Kir3.1/Kir3.4.
    Owen JM; Quinn CC; Leach R; Findlay JB; Boyett MR
    Exp Physiol; 1999 May; 84(3):471-88. PubMed ID: 10362846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. K+ activation of kir3.1/kir3.4 and kv1.4 K+ channels is regulated by extracellular charges.
    Claydon TW; Makary SY; Dibb KM; Boyett MR
    Biophys J; 2004 Oct; 87(4):2407-18. PubMed ID: 15454439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Base of pore loop is important for rectification, activation, permeation, and block of Kir3.1/Kir3.4.
    Makary SM; Claydon TW; Dibb KM; Boyett MR
    Biophys J; 2006 Jun; 90(11):4018-34. PubMed ID: 16513790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of ion selectivity filter by pore loop ion pairs in an inwardly rectifying potassium channel.
    Yang J; Yu M; Jan YN; Jan LY
    Proc Natl Acad Sci U S A; 1997 Feb; 94(4):1568-72. PubMed ID: 9037094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetrical contributions of subunit pore regions to ion selectivity in an inward rectifier K+ channel.
    Silverman SK; Lester HA; Dougherty DA
    Biophys J; 1998 Sep; 75(3):1330-9. PubMed ID: 9726934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The selectivity filter may act as the agonist-activated gate in the G protein-activated Kir3.1/Kir3.4 K+ channel.
    Claydon TW; Makary SY; Dibb KM; Boyett MR
    J Biol Chem; 2003 Dec; 278(50):50654-63. PubMed ID: 14525972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of a negatively charged residue in the hydrophobic domain of the IRK1 inwardly rectifying K+ channel to K(+)-selective permeation.
    Reuveny E; Jan YN; Jan LY
    Biophys J; 1996 Feb; 70(2):754-61. PubMed ID: 8789092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel.
    Yang J; Jan YN; Jan LY
    Neuron; 1995 May; 14(5):1047-54. PubMed ID: 7748552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel ion conducting route besides the central pore in an inherited mutant of G-protein-gated inwardly rectifying K
    Chen IS; Eldstrom J; Fedida D; Kubo Y
    J Physiol; 2022 Feb; 600(3):603-622. PubMed ID: 34881429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for sequential ion-binding loci along the inner pore of the IRK1 inward-rectifier K+ channel.
    Shin HG; Xu Y; Lu Z
    J Gen Physiol; 2005 Aug; 126(2):123-35. PubMed ID: 16043774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TrkB activation by brain-derived neurotrophic factor inhibits the G protein-gated inward rectifier Kir3 by tyrosine phosphorylation of the channel.
    Rogalski SL; Appleyard SM; Pattillo A; Terman GW; Chavkin C
    J Biol Chem; 2000 Aug; 275(33):25082-8. PubMed ID: 10833508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolving potassium channels by means of yeast selection reveals structural elements important for selectivity.
    Bichet D; Lin YF; Ibarra CA; Huang CS; Yi BA; Jan YN; Jan LY
    Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4441-6. PubMed ID: 15070737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permeation properties of inward-rectifier potassium channels and their molecular determinants.
    Choe H; Sackin H; Palmer LG
    J Gen Physiol; 2000 Apr; 115(4):391-404. PubMed ID: 10736307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of rectification in inward-rectifier K+ channels.
    Guo D; Ramu Y; Klem AM; Lu Z
    J Gen Physiol; 2003 Apr; 121(4):261-75. PubMed ID: 12642596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subunit interactions in the assembly of neuronal Kir3.0 inwardly rectifying K+ channels.
    Wischmeyer E; Döring F; Wischmeyer E; Spauschus A; Thomzig A; Veh R; Karschin A
    Mol Cell Neurosci; 1997; 9(3):194-206. PubMed ID: 9245502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms for the time-dependent decay of inward currents through cloned Kir2.1 channels expressed in Xenopus oocytes.
    Shieh RC
    J Physiol; 2000 Jul; 526 Pt 2(Pt 2):241-52. PubMed ID: 10896715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductance properties of the inwardly rectifying channel, Kir3.2: molecular and Brownian dynamics study.
    Hilder TA; Chung SH
    Biochim Biophys Acta; 2013 Feb; 1828(2):471-8. PubMed ID: 23022491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.