These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 14505027)

  • 1. Oxygen consumption in weakly electric Neotropical fishes.
    Julian D; Crampton WG; Wohlgemuth SE; Albert JS
    Oecologia; 2003 Dec; 137(4):502-11. PubMed ID: 14505027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetic constraints on electric signalling in wave-type weakly electric fishes.
    Reardon EE; Parisi A; Krahe R; Chapman LJ
    J Exp Biol; 2011 Dec; 214(Pt 24):4141-50. PubMed ID: 22116756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrosensory and metabolic responses of weakly electric fish to changing water conductivity.
    Wiser SD; Markham MR
    J Exp Biol; 2024 May; 227(10):. PubMed ID: 38712896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proximate and ultimate causes of signal diversity in the electric fish Gymnotus.
    Crampton WG; Rodríguez-Cattáneo A; Lovejoy NR; Caputi AA
    J Exp Biol; 2013 Jul; 216(Pt 13):2523-41. PubMed ID: 23761477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model for studying the energetics of sustained high frequency firing.
    Joos B; Markham MR; Lewis JE; Morris CE
    PLoS One; 2018; 13(4):e0196508. PubMed ID: 29708986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The energetics of electric organ discharge generation in gymnotiform weakly electric fish.
    Salazar VL; Krahe R; Lewis JE
    J Exp Biol; 2013 Jul; 216(Pt 13):2459-68. PubMed ID: 23761471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of electric communication signals in the South American ghost knifefishes (Gymnotiformes: Apteronotidae): A phylogenetic comparative study using a sequence-based phylogeny.
    Smith AR; Proffitt MR; Ho WW; Mullaney CB; Maldonado-Ocampo JA; Lovejoy NR; Alves-Gomes JA; Smith GT
    J Physiol Paris; 2016 Oct; 110(3 Pt B):302-313. PubMed ID: 27769924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular evolution of globin genes in Gymnotiform electric fishes: relation to hypoxia tolerance.
    Tian R; Losilla M; Lu Y; Yang G; Zakon H
    BMC Evol Biol; 2017 Feb; 17(1):51. PubMed ID: 28193153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two new species and a new subgenus of toothed Brachyhypopomus electric knifefishes (Gymnotiformes, Hypopomidae) from the central Amazon and considerations pertaining to the evolution of a monophasic electric organ discharge.
    Sullivan JP; Zuanon J; Cox Fernandes C
    Zookeys; 2013; (327):1-34. PubMed ID: 24167419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Derived loss of signal complexity and plasticity in a genus of weakly electric fish.
    Saenz DE; Gu T; Ban Y; Winemiller KO; Markham MR
    J Exp Biol; 2021 Jun; 224(12):. PubMed ID: 34109419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric signals and species recognition in the wave-type gymnotiform fish Apteronotus leptorhynchus.
    Fugère V; Krahe R
    J Exp Biol; 2010 Jan; 213(2):225-36. PubMed ID: 20038655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric organ discharges and near-field spatiotemporal patterns of the electromotive force in a sympatric assemblage of Neotropical electric knifefish.
    Waddell JC; Rodríguez-Cattáneo A; Caputi AA; Crampton WGR
    J Physiol Paris; 2016 Oct; 110(3 Pt B):164-181. PubMed ID: 27794446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental and hormonal influences upon EOD waveform in gymnotiform pulse fish.
    Silva A; Quintana L; Ardanaz JL; Macadar O
    J Physiol Paris; 2002; 96(5-6):473-84. PubMed ID: 14692495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking activity patterns of a multispecies community of gymnotiform weakly electric fish in their neotropical habitat without tagging.
    Henninger J; Krahe R; Sinz F; Benda J
    J Exp Biol; 2020 Feb; 223(Pt 3):. PubMed ID: 31937524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convergent mosaic brain evolution is associated with the evolution of novel electrosensory systems in teleost fishes.
    Schumacher EL; Carlson BA
    Elife; 2022 Jun; 11():. PubMed ID: 35713403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal acclimation and thyroxine treatment modify the electric organ discharge frequency in an electric fish, Apteronotus leptorhynchus.
    Dunlap KD; Ragazzi MA
    Physiol Behav; 2015 Nov; 151():64-71. PubMed ID: 26143349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convergent evolution of locomotor morphology but not performance in gymnotiform swimmers.
    Whitlow KR; Santini F; Oufiero CE
    J Evol Biol; 2019 Jan; 32(1):76-88. PubMed ID: 30414343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A shocking discovery of threat risks on newly described species of weakly electric fishes.
    Tagliacollo VA; Camelier P; Zanata AM; Reis RE
    J Fish Biol; 2020 May; 96(5):1077-1086. PubMed ID: 31297822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coding conspecific identity and motion in the electric sense.
    Yu N; Hupé G; Garfinkle C; Lewis JE; Longtin A
    PLoS Comput Biol; 2012; 8(7):e1002564. PubMed ID: 22807662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The weakly electric fish, Apteronotus albifrons, actively avoids experimentally induced hypoxia.
    Mucha S; Chapman LJ; Krahe R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2021 May; 207(3):369-379. PubMed ID: 33751182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.