These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 14505027)

  • 41. Multiple cases of striking genetic similarity between alternate electric fish signal morphs in sympatry.
    Arnegard ME; Bogdanowicz SM; Hopkins CD
    Evolution; 2005 Feb; 59(2):324-43. PubMed ID: 15807419
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Aerobic scope for activity in age 0 year Atlantic cod Gadus morhua.
    Hansen SL; von Herbing IH
    J Fish Biol; 2009 May; 74(7):1355-70. PubMed ID: 20735639
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Intraspecific variability of the pulse-type discharges of the African electric fishes, Pollimyrus isidori and Petrocephalus bovei (Mormyridae, Teleostei), and their dependence on water conductivity.
    Bratton BO; Kramer B
    Exp Biol; 1988; 47(4):227-38. PubMed ID: 3220124
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Species differences in electric organs of mormyrids: substrates for species-typical electric organ discharge waveforms.
    Bass AH
    J Comp Neurol; 1986 Feb; 244(3):313-30. PubMed ID: 3958230
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The evolutionary origins of electric signal complexity.
    Stoddard PK
    J Physiol Paris; 2002; 96(5-6):485-91. PubMed ID: 14692496
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Time-domain signal divergence and discrimination without receptor modification in sympatric morphs of electric fishes.
    Arnegard ME; Jackson BS; Hopkins CD
    J Exp Biol; 2006 Jun; 209(Pt 11):2182-98. PubMed ID: 16709920
    [TBL] [Abstract][Full Text] [Related]  

  • 47. To see or not to see: molecular evolution of the rhodopsin visual pigment in neotropical electric fishes.
    Van Nynatten A; Janzen FH; Brochu K; Maldonado-Ocampo JA; Crampton WGR; Chang BSW; Lovejoy NR
    Proc Biol Sci; 2019 Jul; 286(1906):20191182. PubMed ID: 31288710
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Active electroreception in Gymnotus omari: imaging, object discrimination, and early processing of actively generated signals.
    Caputi AA; Castelló ME; Aguilera PA; Pereira C; Nogueira J; Rodríguez-Cattaneo A; Lezcano C
    J Physiol Paris; 2008; 102(4-6):256-71. PubMed ID: 18992336
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effects of diel-cycling hypoxia acclimation on the hypoxia tolerance, swimming capacity and growth performance of southern catfish (Silurus meridionalis).
    Yang H; Cao ZD; Fu SJ
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Jun; 165(2):131-8. PubMed ID: 23474254
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Behavioral responses to jamming and 'phantom' jamming stimuli in the weakly electric fish Eigenmannia.
    Carlson BA; Kawasaki M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Sep; 193(9):927-41. PubMed ID: 17609965
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interspecific variation in hypoxia tolerance, swimming performance and plasticity in cyprinids that prefer different habitats.
    Fu SJ; Fu C; Yan GJ; Cao ZD; Zhang AJ; Pang X
    J Exp Biol; 2014 Feb; 217(Pt 4):590-7. PubMed ID: 24198253
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The electric sense of weakly electric fish.
    Heiligenberg W; Bastian J
    Annu Rev Physiol; 1984; 46():561-83. PubMed ID: 6324664
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of elevated temperature on coral reef fishes: loss of hypoxia tolerance and inability to acclimate.
    Nilsson GE; Ostlund-Nilsson S; Munday PL
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Aug; 156(4):389-93. PubMed ID: 20233610
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electric signaling behavior and the mechanisms of electric organ discharge production in mormyrid fish.
    Carlson BA
    J Physiol Paris; 2002; 96(5-6):405-19. PubMed ID: 14692489
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Voltage-gated potassium conductances in Gymnotus electrocytes(AB).
    Sierra F; Comas V; Buño W; Macadar O
    Neuroscience; 2007 Mar; 145(2):453-63. PubMed ID: 17222982
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modelling energetic costs of fish swimming.
    Ohlberger J; Staaks G; van Dijk PL; Hölker F
    J Exp Zool A Comp Exp Biol; 2005 Aug; 303(8):657-64. PubMed ID: 16013050
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Species differences in group size and electrosensory interference in weakly electric fishes: implications for electrosensory processing.
    Stamper SA; Carrera-G E; Tan EW; Fugère V; Krahe R; Fortune ES
    Behav Brain Res; 2010 Mar; 207(2):368-76. PubMed ID: 19874855
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure and function of neurons in the complex of the nucleus electrosensorius of Sternopygus and Eigenmannia: diencephalic substrates for the evolution of the jamming avoidance response.
    Green RL; Rose GJ
    Brain Behav Evol; 2004; 64(2):85-103. PubMed ID: 15205544
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of acute and chronic hypoxia on the swimming performance, metabolic capacity and cardiac function of Atlantic cod (Gadus morhua).
    Petersen LH; Gamperl AK
    J Exp Biol; 2010 Mar; 213(5):808-19. PubMed ID: 20154197
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The contribution of air breathing to aerobic scope and exercise performance in the banded knifefish Gymnotus carapo L.
    McKenzie DJ; Steffensen JF; Taylor EW; Abe AS
    J Exp Biol; 2012 Apr; 215(Pt 8):1323-30. PubMed ID: 22442370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.