BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 14505033)

  • 21. Morphology and physiology of pleural-to-buccal neurons coordinating defensive retraction with feeding arrest in the pond snail Lymnaea stagnalis.
    Alania M; Sakharov DA
    Acta Biol Hung; 2000; 51(2-4):197-203. PubMed ID: 11034144
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Early elements in gastropod neurogenesis.
    Croll RP; Voronezhskaya EE
    Dev Biol; 1996 Jan; 173(1):344-7. PubMed ID: 8575634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GABA-immunoreactive neurones and interactions of GABA with serotonin and FMRFamide in a peripheral sensory ganglion of the pond snail Lymnaea stagnalis.
    Nezlin L; Voronezhskaya E
    Brain Res; 1997 Oct; 772(1-2):217-25. PubMed ID: 9406975
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A molecularly defined cardiorespiratory interneuron expressing SDPFLRFamide/GDPFLRFamide in the snail Lymnaea: monosynaptic connections and pharmacology.
    Skingsley DR; Bright K; Santama N; van Minnen J; Brierley MJ; Burke JF; Benjamin PR
    J Neurophysiol; 1993 Mar; 69(3):915-27. PubMed ID: 8096540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insights into early molluscan neuronal development through studies of transmitter phenotypes in embryonic pond snails.
    Croll RP
    Microsc Res Tech; 2000 Jun; 49(6):570-8. PubMed ID: 10862113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Primary sensory neurons and their central projections in the pond snail Lymnaea stagnalis.
    Nezlin LP
    Acta Biol Hung; 1995; 46(2-4):305-13. PubMed ID: 8853701
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cyclic AMP is involved in cardioregulation by multiple neuropeptides encoded on the FMRFamide gene.
    Willoughby D; Yeoman MS; Benjamin PR
    J Exp Biol; 1999 Oct; 202(Pt 19):2595-607. PubMed ID: 10482719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peptidergic regulation of muscle movements in a prosobranch mollusc, Rapana thomasiana.
    Kobayashi M; Sakata MF
    Acta Biol Hung; 1992; 43(1-4):159-66. PubMed ID: 1299108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Presence and distribution of immunoreactive FMRFamide- and bovine pancreatic polypeptide-like peptides in a protochordate ascidian.
    Pestarino M; Lucaroni B; Distefano S
    Eur J Histochem; 1993; 37(3):225-32. PubMed ID: 7693060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutually exclusive expression of alternatively spliced FMRFamide transcripts in identified neuronal systems of the snail Lymnaea.
    Bright K; Kellett E; Saunders SE; Brierley M; Burke JF; Benjamin PR
    J Neurosci; 1993 Jun; 13(6):2719-29. PubMed ID: 8501534
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Morphologic characteristics and responses of the neurons of the right parietal ganglion in Lymnaea stagnalis to stimulation of the sensory structures].
    Shuvalova NE; Zaĭtseva OV
    Zh Evol Biokhim Fiziol; 1988; 24(5):708-14. PubMed ID: 3218402
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alternative RNA splicing generates diversity of neuropeptide expression in the brain of the snail Lymnaea: in situ analysis of mutually exclusive transcripts of the FMRFamide gene.
    Santama N; Benjamin PR; Burke JF
    Eur J Neurosci; 1995 Jan; 7(1):65-76. PubMed ID: 7711938
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The brain of Lymnaea contains a family of FMRFamide-like peptides.
    Ebberink RH; Price DA; van Loenhout H; Doble KE; Riehm JP; Geraerts WP; Greenberg MJ
    Peptides; 1987; 8(3):515-22. PubMed ID: 3658814
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Postembryonic development of serotoninlike immunoreactivity in the central nervous system of the snail, Lymnaea stagnalis.
    Croll RP; Chiasson BJ
    J Comp Neurol; 1989 Feb; 280(1):122-42. PubMed ID: 2918092
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of catecholaminergic neurons in the pond snail, Lymnaea stagnalis: I. Embryonic development of dopamine-containing neurons and dopamine-dependent behaviors.
    Voronezhskaya EE; Hiripi L; Elekes K; Croll RP
    J Comp Neurol; 1999 Feb; 404(3):285-96. PubMed ID: 9952348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of embryonic cells containing serotonin, catecholamines, and FMRFamide-related peptides in Aplysia californica.
    Dickinson AJ; Croll RP; Voronezhskaya EE
    Biol Bull; 2000 Dec; 199(3):305-15. PubMed ID: 11147711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution and localization of immunoreactive FMRFamide-like peptides in the lancelet.
    Massari M; Candiani S; Pestarino M
    Eur J Histochem; 1999; 43(1):63-9. PubMed ID: 10340145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Localization of the neuropeptide APGWamide in gastropod molluscs by in situ hybridization and immunocytochemistry.
    de Lange RP; van Minnen J
    Gen Comp Endocrinol; 1998 Feb; 109(2):166-74. PubMed ID: 9473361
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Western blotting of formaldehyde-fixed neuropeptides as small as 400 daltons on gelatin-coated nitrocellulose paper.
    Too CK; Murphy PR; Croll RP
    Anal Biochem; 1994 Jun; 219(2):341-8. PubMed ID: 7915887
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Segment-specific modifications of a neuropeptide phenotype in embryonic neurons of the moth, Manduca sexta.
    Wall JB; Taghert PH
    J Comp Neurol; 1991 Jul; 309(3):375-90. PubMed ID: 1918442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.