These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 14505076)

  • 1. Metal binding to cowpea chlorotic mottle virus using terbium(III) fluorescence.
    Basu G; Allen M; Willits D; Young M; Douglas T
    J Biol Inorg Chem; 2003 Sep; 8(7):721-5. PubMed ID: 14505076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-binding studies for a de novo designed calcium-binding protein.
    Wilkins AL; Ye Y; Yang W; Lee HW; Liu ZR; Yang JJ
    Protein Eng; 2002 Jul; 15(7):571-4. PubMed ID: 12200539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lanthanide spectroscopic studies of the dinuclear and Mg(II)-dependent PvuII restriction endonuclease.
    Bowen LM; Muller G; Riehl JP; Dupureur CM
    Biochemistry; 2004 Dec; 43(48):15286-95. PubMed ID: 15568821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Symptom induction by Cowpea chlorotic mottle virus on Vigna unguiculata is determined by amino acid residue 151 in the coat protein.
    de Assis Filho FM; Paguio OR; Sherwood JL; Deom CM
    J Gen Virol; 2002 Apr; 83(Pt 4):879-883. PubMed ID: 11907338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural transitions in Cowpea chlorotic mottle virus (CCMV).
    Liepold LO; Revis J; Allen M; Oltrogge L; Young M; Douglas T
    Phys Biol; 2005 Nov; 2(4):S166-72. PubMed ID: 16280622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism and pathway of pH induced swelling in cowpea chlorotic mottle virus.
    Tama F; Brooks CL
    J Mol Biol; 2002 May; 318(3):733-47. PubMed ID: 12054819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Swelling and softening of the cowpea chlorotic mottle virus in response to pH shifts.
    Wilts BD; Schaap IAT; Schmidt CF
    Biophys J; 2015 May; 108(10):2541-2549. PubMed ID: 25992732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystallographic structure of brome mosaic virus.
    Lucas RW; Larson SB; McPherson A
    J Mol Biol; 2002 Mar; 317(1):95-108. PubMed ID: 11916381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cation binding properties of calretinin, an EF-hand calcium-binding protein.
    Groves P; Palczewska M
    Acta Biochim Pol; 2001; 48(1):113-9. PubMed ID: 11440160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The methyltransferase domain of the 1a protein of cowpea chlorotic mottle virus controls local and systemic accumulation in cowpea.
    Quan S; Nelson RS; Deom CM
    Arch Virol; 2008; 153(8):1505-16. PubMed ID: 18604602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competition studies in horse spleen ferritin probed by a kinetically inert inhibitor, [Cr(TREN)(H(2)O)(OH)](2+), and a highly luminescent Tb(III) reagent.
    Barnés CM; Petoud S; Cohen SM; Raymond KN
    J Biol Inorg Chem; 2003 Jan; 8(1-2):195-205. PubMed ID: 12459915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy.
    Speir JA; Munshi S; Wang G; Baker TS; Johnson JE
    Structure; 1995 Jan; 3(1):63-78. PubMed ID: 7743132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Versatile post-functionalization of the external shell of cowpea chlorotic mottle virus by using click chemistry.
    Hommersom CA; Matt B; van der Ham A; Cornelissen JJ; Katsonis N
    Org Biomol Chem; 2014 Jun; 12(24):4065-9. PubMed ID: 24817149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encapsulation and crystallization of Prussian blue nanoparticles by cowpea chlorotic mottle virus capsids.
    Wu Y; Yang H; Shin HJ
    Biotechnol Lett; 2014 Mar; 36(3):515-21. PubMed ID: 24190479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of cucumber mosaic virus and comparison to cowpea chlorotic mottle virus.
    Smith TJ; Chase E; Schmidt T; Perry KL
    J Virol; 2000 Aug; 74(16):7578-86. PubMed ID: 10906212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terbium(III) luminescence study of the spatial relationship of tryptophan residues to the two metal ion binding sites of Escherichia coli glutamine synthetase.
    McNemar LS; Lin WY; Eads CD; Atkins WM; Dombrosky P; Villafranca JJ
    Biochemistry; 1991 Apr; 30(14):3417-21. PubMed ID: 1672821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of Cowpea chlorotic mottle virus-like particles as scaffold for epitope presentations.
    Hassani-Mehraban A; Creutzburg S; van Heereveld L; Kormelink R
    BMC Biotechnol; 2015 Aug; 15():80. PubMed ID: 26311254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence and FT-IR spectroscopic studies of Suwannee River fulvic acid complexation with aluminum, terbium and calcium.
    Elkins KM; Nelson DJ
    J Inorg Biochem; 2001 Nov; 87(1-2):81-96. PubMed ID: 11709217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-ion-induced formation and stabilization of protein cages based on the cowpea chlorotic mottle virus.
    Minten IJ; Wilke KD; Hendriks LJ; van Hest JC; Nolte RJ; Cornelissen JJ
    Small; 2011 Apr; 7(7):911-9. PubMed ID: 21381194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of coat protein mutations and reduced movement protein expression on infection spread by cowpea chlorotic mottle virus and its hybrid derivatives.
    De Jong W; Mise K; Chu A; Ahlquist P
    Virology; 1997 May; 232(1):167-73. PubMed ID: 9185600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.