BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 14505173)

  • 21. The identification of enzyme targets for the optimization of a valine producing Corynebacterium glutamicum strain using a kinetic model.
    Magnus JB; Oldiges M; Takors R
    Biotechnol Prog; 2009; 25(3):754-62. PubMed ID: 19405093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Instability of glutamate production by Corynebacterium glutamicum 2262 in continuous culture using the temperature-triggered process.
    Uy D; Delaunay S; Germain P; Engasser JM; Goergen JL
    J Biotechnol; 2003 Sep; 104(1-3):173-84. PubMed ID: 12948637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutation-induced metabolite pool alterations in Corynebacterium glutamicum: towards the identification of nitrogen control signals.
    Müller T; Strösser J; Buchinger S; Nolden L; Wirtz A; Krämer R; Burkovski A
    J Biotechnol; 2006 Dec; 126(4):440-53. PubMed ID: 16822574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gene expression of Corynebacterium glutamicum in response to the conditions inducing glutamate overproduction.
    Kataoka M; Hashimoto KI; Yoshida M; Nakamatsu T; Horinouchi S; Kawasaki H
    Lett Appl Microbiol; 2006 May; 42(5):471-6. PubMed ID: 16620205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities.
    Zhao J; Baba T; Mori H; Shimizu K
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):91-8. PubMed ID: 14661115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical aspects of 13C metabolic flux analysis with sole quantification of carbon dioxide labeling.
    Yang TH; Heinzle E; Wittmann C
    Comput Biol Chem; 2005 Apr; 29(2):121-33. PubMed ID: 15833440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum--over expression and modification of G6P dehydrogenase.
    Becker J; Klopprogge C; Herold A; Zelder O; Bolten CJ; Wittmann C
    J Biotechnol; 2007 Oct; 132(2):99-109. PubMed ID: 17624457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uncovering metabolic objectives pursued by changes of enzyme levels.
    Hoffmann S; Holzhütter HG
    Ann N Y Acad Sci; 2009 Mar; 1158():57-70. PubMed ID: 19348632
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of lpdA gene knockout on the metabolism in Escherichia coli based on enzyme activities, intracellular metabolite concentrations and metabolic flux analysis by 13C-labeling experiments.
    Li M; Ho PY; Yao S; Shimizu K
    J Biotechnol; 2006 Mar; 122(2):254-66. PubMed ID: 16310273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Study on the metabolism of Escherichia coli DH5alpha and its acetate-tolerant mutant DA19 based on key enzyme activity analysis].
    Zhang XY; Zhang YJ; Li ZM; Ye Q
    Sheng Wu Gong Cheng Xue Bao; 2007 Sep; 23(5):896-901. PubMed ID: 18051872
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of biotin on transcription levels of key enzymes and glutamate efflux in glutamate fermentation by Corynebacterium glutamicum.
    Cao Y; Duan Z; Shi Z
    World J Microbiol Biotechnol; 2014 Feb; 30(2):461-8. PubMed ID: 23990041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The impact of PHB accumulation on L-glutamate production by recombinant Corynebacterium glutamicum.
    Liu Q; Ouyang SP; Kim J; Chen GQ
    J Biotechnol; 2007 Nov; 132(3):273-9. PubMed ID: 17555841
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Effects of culture conditions on coenzyme Q10 production by Rhizobium radiobacter by metabolic flux analysis].
    Wu ZF; Du GC; Chen J
    Wei Sheng Wu Xue Bao; 2005 Apr; 45(2):231-5. PubMed ID: 15989267
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Occurrence of glutamate dehydrogenase isoenzymes during growth of Oocystis alga.
    Lee BH; Picard GA
    Biotechnol Bioeng; 1983 Jul; 25(7):1801-16. PubMed ID: 18551483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combining metabolic flux analysis tools and 13C NMR to estimate intracellular fluxes of cultured astrocytes.
    Teixeira AP; Santos SS; Carinhas N; Oliveira R; Alves PM
    Neurochem Int; 2008 Feb; 52(3):478-86. PubMed ID: 17904693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Triggering mechanism of L-glutamate overproduction by DtsR1 in coryneform bacteria.
    Kimura E
    J Biosci Bioeng; 2002; 94(6):545-51. PubMed ID: 16233348
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interpretation of metabolic flux maps by limitation potentials and constrained limitation sensitivities.
    Wahl SA; Takors R; Wiechert W
    Biotechnol Bioeng; 2006 Jun; 94(2):263-72. PubMed ID: 16596665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Serial flux mapping of Corynebacterium glutamicum during fed-batch L-lysine production using the sensor reactor approach.
    Drysch A; El Massaoudi M; Wiechert W; de Graaf AA; Takors R
    Biotechnol Bioeng; 2004 Mar; 85(5):497-505. PubMed ID: 14760690
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MetaFluxNet, a program package for metabolic pathway construction and analysis, and its use in large-scale metabolic flux analysis of Escherichia coli.
    Lee SY; Lee DY; Hong SH; Kim TY; Yun H; Oh YG; Park S
    Genome Inform; 2003; 14():23-33. PubMed ID: 15706517
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic engineering--integrating methodologies of molecular breeding and bioprocess systems engineering.
    Shimizu H
    J Biosci Bioeng; 2002; 94(6):563-73. PubMed ID: 16233351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.