These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 14505399)
1. Solid-state NMR spectroscopy method for determination of the backbone torsion angle psi in peptides with isolated uniformly labeled residues. Chan JC; Tycko R J Am Chem Soc; 2003 Oct; 125(39):11828-9. PubMed ID: 14505399 [TBL] [Abstract][Full Text] [Related]
2. Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy. Wylie BJ; Franks WT; Rienstra CM J Phys Chem B; 2006 Jun; 110(22):10926-36. PubMed ID: 16771346 [TBL] [Abstract][Full Text] [Related]
3. Measurement of multiple psi torsion angles in uniformly 13C,15N-labeled alpha-spectrin SH3 domain using 3D 15N-13C-13C-15N MAS dipolar-chemical shift correlation spectroscopy. Ladizhansky V; Jaroniec CP; Diehl A; Oschkinat H; Griffin RG J Am Chem Soc; 2003 Jun; 125(22):6827-33. PubMed ID: 12769594 [TBL] [Abstract][Full Text] [Related]
4. Constraints on supramolecular structure in amyloid fibrils from two-dimensional solid-state NMR spectroscopy with uniform isotopic labeling. Tycko R; Ishii Y J Am Chem Soc; 2003 Jun; 125(22):6606-7. PubMed ID: 12769550 [TBL] [Abstract][Full Text] [Related]
5. Determination of the backbone torsion psi angle by tensor correlation of chemical shift anisotropy and heteronuclear dipole-dipole interaction. Mou Y; Tsai TW; Chan JC Solid State Nucl Magn Reson; 2007 Apr; 31(2):72-81. PubMed ID: 17329083 [TBL] [Abstract][Full Text] [Related]
6. Structure determination of a peptide model of the repeated helical domain in Samia cynthia ricini silk fibroin before spinning by a combination of advanced solid-state NMR methods. Nakazawa Y; Asakura T J Am Chem Soc; 2003 Jun; 125(24):7230-7. PubMed ID: 12797796 [TBL] [Abstract][Full Text] [Related]
7. Determination of methyl 13C-15N dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state NMR spectroscopy. Helmus JJ; Nadaud PS; Höfer N; Jaroniec CP J Chem Phys; 2008 Feb; 128(5):052314. PubMed ID: 18266431 [TBL] [Abstract][Full Text] [Related]
8. Solid-state NMR and quantum chemical investigations of 13Calpha shielding tensor magnitudes and orientations in peptides: determining phi and psi torsion angles. Wi S; Sun H; Oldfield E; Hong M J Am Chem Soc; 2005 May; 127(17):6451-8. PubMed ID: 15853353 [TBL] [Abstract][Full Text] [Related]
9. Determination of solid-state NMR structures of proteins by means of three-dimensional 15N-13C-13C dipolar correlation spectroscopy and chemical shift analysis. Castellani F; van Rossum BJ; Diehl A; Rehbein K; Oschkinat H Biochemistry; 2003 Oct; 42(39):11476-83. PubMed ID: 14516199 [TBL] [Abstract][Full Text] [Related]
10. Structure determination in "shiftless" solid state NMR of oriented protein samples. Yin Y; Nevzorov AA J Magn Reson; 2011 Sep; 212(1):64-73. PubMed ID: 21741286 [TBL] [Abstract][Full Text] [Related]
11. Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. Andronesi OC; Becker S; Seidel K; Heise H; Young HS; Baldus M J Am Chem Soc; 2005 Sep; 127(37):12965-74. PubMed ID: 16159291 [TBL] [Abstract][Full Text] [Related]
12. Rotational resonance in uniformly 13C-labeled solids: effects on high-resolution magic-angle spinning NMR spectra and applications in structural studies of biomolecular systems. Petkova AT; Tycko R J Magn Reson; 2004 May; 168(1):137-46. PubMed ID: 15082259 [TBL] [Abstract][Full Text] [Related]
13. Backbone conformational constraints in a microcrystalline U-15N-labeled protein by 3D dipolar-shift solid-state NMR spectroscopy. Franks WT; Wylie BJ; Stellfox SA; Rienstra CM J Am Chem Soc; 2006 Mar; 128(10):3154-5. PubMed ID: 16522090 [TBL] [Abstract][Full Text] [Related]
15. Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin. Zech SG; Wand AJ; McDermott AE J Am Chem Soc; 2005 Jun; 127(24):8618-26. PubMed ID: 15954766 [TBL] [Abstract][Full Text] [Related]
16. Determination of peptide backbone torsion angles using double-quantum dipolar recoupling solid-state NMR spectroscopy. Mehta MA; Eddy MT; McNeill SA; Mills FD; Long JR J Am Chem Soc; 2008 Feb; 130(7):2202-12. PubMed ID: 18220389 [TBL] [Abstract][Full Text] [Related]
17. High-resolution solid-state NMR studies on uniformly [13C,15N]-labeled ubiquitin. Seidel K; Etzkorn M; Heise H; Becker S; Baldus M Chembiochem; 2005 Sep; 6(9):1638-47. PubMed ID: 16094694 [TBL] [Abstract][Full Text] [Related]
18. Homonuclear dipolar recoupling techniques for structure determination in uniformly 13C-labeled proteins. Ladizhansky V Solid State Nucl Magn Reson; 2009 Nov; 36(3):119-28. PubMed ID: 19729285 [TBL] [Abstract][Full Text] [Related]
19. Determination of multiple ***φ***-torsion angles in proteins by selective and extensive (13)C labeling and two-dimensional solid-state NMR. Hong M J Magn Reson; 1999 Aug; 139(2):389-401. PubMed ID: 10423377 [TBL] [Abstract][Full Text] [Related]
20. Determination of the peptide torsion angle phi by 15N chemical shift and 13Calpha-1Halpha dipolar tensor correlation in solid-state MAS NMR. Hong M; Gross JD; Hu W; Griffin RG J Magn Reson; 1998 Nov; 135(1):169-77. PubMed ID: 9799691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]