These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 14505725)

  • 21. Mobility and dissipation of chlorpyriphos and quinalphos in sandy clay loam in an agroecosystem-a laboratory-based soil column study.
    G P B; C C H
    Environ Monit Assess; 2017 Sep; 189(10):506. PubMed ID: 28913700
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Processes affecting the dissipation of the herbicide isoxaflutole and its diketonitrile metabolite in agricultural soils under field conditions.
    Papiernik SK; Yates SR; Koskinen WC; Barber B
    J Agric Food Chem; 2007 Oct; 55(21):8630-9. PubMed ID: 17880161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissipation of sulfosulfuron in soil and wheat plant under predominant cropping conditions and in a simulated model ecosystem.
    Ramesh A; Maheswari ST
    J Agric Food Chem; 2003 May; 51(11):3396-400. PubMed ID: 12744673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial variability in 14C-herbicide degradation in surface and subsurface soils.
    Charnay MP; Tuis S; Coquet Y; Barriuso E
    Pest Manag Sci; 2005 Sep; 61(9):845-55. PubMed ID: 16003827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photocatalytic mechanisms of indoleamine destruction by the quinalphos metabolite 2-hydroxyquinoxaline: a study on melatonin and its precursors serotonin and N-acetylserotonin.
    Behrends A; Riediger S; Grube S; Poeggeler B; Haldar C; Hardeland R
    J Environ Sci Health B; 2007 Aug; 42(6):599-606. PubMed ID: 17701694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Risk assessment, dissipation behavior and persistence of quinalphos in/on green pea by gas chromatography with electron capture detector.
    Dar AA; Jan I; Wani AA; Mubashir S; Sofi KA; Sofi JA; Dar IH
    J Sep Sci; 2018 Jun; 41(11):2380-2385. PubMed ID: 29505694
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissipation and residues of N-(2-bromophenyl)-2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamine residues in rape and soil under field conditions.
    Liu D; Qin D; Ji R
    Bull Environ Contam Toxicol; 2009 Sep; 83(3):359-62. PubMed ID: 19434351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Beneficial effects of fluorescent pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogea L.).
    Shweta B; Maheshwari DK; Dubey RC; Arora DS; Bajpai VK; Kang SC
    J Microbiol Biotechnol; 2008 Sep; 18(9):1578-83. PubMed ID: 18852515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photostability of methidathion in wet soil amended with biosolid and a surfactant under solar irradiation.
    Sánchez L; Romero E; Peña A
    Chemosphere; 2005 May; 59(7):969-76. PubMed ID: 15823330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phylloplane bacteria increase seedling emergence, growth and yield of field-grown groundnut (Arachis hypogaea L.).
    Kishore GK; Pande S; Podile AR
    Lett Appl Microbiol; 2005; 40(4):260-8. PubMed ID: 15752215
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparative study on the dissipation and microbial metabolism of organophosphate and carbamate insecticides in orchaqualf and fluvaquent soils of West Bengal.
    Das AC; Chakravarty A; Sen G; Sukul P; Mukherjee D
    Chemosphere; 2005 Feb; 58(5):579-84. PubMed ID: 15620751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Availability of pesticide-treated seed on arable fields.
    de Snoo GR; Luttik R
    Pest Manag Sci; 2004 May; 60(5):501-6. PubMed ID: 15154519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissipation of [(14)C]acetochlor herbicide under anaerobic aquatic conditions in flooded soil microcosms.
    Loor-Vela SX; Crawford Simmons JJ; Simmons FW; Raskin L
    J Agric Food Chem; 2003 Nov; 51(23):6767-73. PubMed ID: 14582973
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Soil dissipation and leaching behavior of a neonicotinoid insecticide thiamethoxam.
    Gupta S; Gajbhiye VT; Gupta RK
    Bull Environ Contam Toxicol; 2008 May; 80(5):431-7. PubMed ID: 18431522
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissipation and leaching of acephate, chlorpyrifos, and their main metabolites in field soils of Malaysia.
    Chai LK; Mohd-Tahir N; Hansen S; Hansen HC
    J Environ Qual; 2009; 38(3):1160-9. PubMed ID: 19398513
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degradation of carbaryl by soil microorganisms.
    Rodriguez LD; Dorough HW
    Arch Environ Contam Toxicol; 1977; 6(1):47-56. PubMed ID: 410374
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ionic thiocyanate (SCN(-)) production, fate, and phytotoxicity in soil amended with Brassicaceae seed meals.
    Hansson D; Morra MJ; Borek V; Snyder AJ; Johnson-Maynard JL; Thill DC
    J Agric Food Chem; 2008 Jun; 56(11):3912-7. PubMed ID: 18442242
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A soluble preparation from developing groundnut seeds (Arachis hypogaea) catalyzes de novo synthesis of long chain fatty acids.
    Sreenivas A; Sastry PS
    Indian J Biochem Biophys; 1995 Aug; 32(4):213-7. PubMed ID: 8655190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissipation kinetics of flubendiamide on chili and soil.
    Sahoo SK; Sharma RK; Battu RS; Singh B
    Bull Environ Contam Toxicol; 2009 Sep; 83(3):384-7. PubMed ID: 19458880
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fate of imidacloprid in soil and plant after application to cotton seeds.
    El-Hamady SE; Kubiak R; Derbalah AS
    Chemosphere; 2008 May; 71(11):2173-9. PubMed ID: 18280534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.