BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 14506073)

  • 1. Effects of chloride channel blockers on rat renal vascular responses to angiotensin II and norepinephrine.
    Steendahl J; Holstein-Rathlou NH; Sorensen CM; Salomonsson M
    Am J Physiol Renal Physiol; 2004 Feb; 286(2):F323-30. PubMed ID: 14506073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloride channel blockade attenuates the effect of angiotensin II on tubuloglomerular feedback in WKY but not spontaneously hypertensive rats.
    Hashimoto S; Kawata T; Schnermann J; Koike T
    Kidney Blood Press Res; 2004; 27(1):35-42. PubMed ID: 14679313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium recruitment in renal vasculature: NE effects on blood flow and cytosolic calcium concentration.
    Salomonsson M; Arendshorst WJ
    Am J Physiol; 1999 May; 276(5):F700-10. PubMed ID: 10330052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The in vivo role of vascular chloride channels in the regulation of glomerular hemodynamics].
    Hashimoto S
    Hokkaido Igaku Zasshi; 1999 Sep; 74(5):387-94. PubMed ID: 10495853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renovascular BK(Ca) channels are not activated in vivo under resting conditions and during agonist stimulation.
    Magnusson L; Sorensen CM; Braunstein TH; Holstein-Rathlou NH; Salomonsson M
    Am J Physiol Regul Integr Comp Physiol; 2007 Jan; 292(1):R345-53. PubMed ID: 16973937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of tyrosine kinase blockade on norepinephrine-induced cytosolic calcium response in rat afferent arterioles.
    Salomonsson M; Arendshorst WJ
    Am J Physiol Renal Physiol; 2004 May; 286(5):F866-74. PubMed ID: 15075182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium and chloride channel activation by angiotensin II-AT1 receptors in preglomerular vascular smooth muscle cells.
    Fuller AJ; Hauschild BC; Gonzalez-Villalobos R; Awayda MS; Imig JD; Inscho EW; Navar LG
    Am J Physiol Renal Physiol; 2005 Oct; 289(4):F760-7. PubMed ID: 15942047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angiotensin II and renal medullary blood flow in Lyon rats.
    Sarkis A; Liu KL; Lo M; Benzoni D
    Am J Physiol Renal Physiol; 2003 Feb; 284(2):F365-72. PubMed ID: 12529274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different responses of cortical and juxtamedullary arterioles to norepinephrine and angiotensin II.
    Steinhausen M; Ballantyne D; Fretschner M; Hoffend J; Parekh N
    Kidney Int Suppl; 1990 Nov; 30():S55-9. PubMed ID: 2259077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segment-specific effect of chloride channel blockade on rat renal arteriolar contractile responses to angiotensin II.
    Carmines PK
    Am J Hypertens; 1995 Jan; 8(1):90-4. PubMed ID: 7734105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of chloride channels in afferent arteriolar constriction.
    Takenaka T; Kanno Y; Kitamura Y; Hayashi K; Suzuki H; Saruta T
    Kidney Int; 1996 Sep; 50(3):864-72. PubMed ID: 8872961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiotensin II-mediated constriction of afferent and efferent arterioles involves T-type Ca2+ channel activation.
    Feng MG; Navar LG
    Am J Nephrol; 2004; 24(6):641-8. PubMed ID: 15627720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of adenosine A(1) receptor in angiotensin II- and norepinephrine-induced renal vasoconstriction.
    Aki Y; Nishiyama A; Miyatake A; Kimura S; Kohno M; Abe Y
    J Pharmacol Exp Ther; 2002 Oct; 303(1):117-23. PubMed ID: 12235241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of verapamil on renal vasoconstriction induced by angiotensin II, norepinephrine or renal nerve stimulation in anesthetized dogs.
    Ogawa N; Kushida H; Satoh S
    Arch Int Pharmacodyn Ther; 1984 Mar; 268(1):113-21. PubMed ID: 6732356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloride ion currents contribute functionally to norepinephrine-induced vascular contraction.
    Lamb FS; Barna TJ
    Am J Physiol; 1998 Jul; 275(1):H151-60. PubMed ID: 9688908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of c-Jun N-terminal kinase in the regulation of vascular tone.
    Zhou MS; Schulman IH; Chadipiralla K; Raij L
    J Cardiovasc Pharmacol Ther; 2010 Mar; 15(1):78-83. PubMed ID: 20075153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of prostaglandins and nitric oxide on the renal effects of angiotensin II in the anaesthetized rat.
    Clayton JS; Clark KL; Johns EJ; Drew GM
    Br J Pharmacol; 1998 Aug; 124(7):1467-74. PubMed ID: 9723960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Role of calcium-activated chloride channels in the regulation of pulmonary vascular tone in rats].
    Yang Z; Zhang ZX; Xu YJ; Ye T; Li YQ
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2006 May; 22(2):215-8. PubMed ID: 21162244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of norepinephrine & angiotensin II in the neural control of renal sodium & water handling in spontaneously hypertensive rats.
    Salman IM; Sattar MA; Ameer OZ; Abdullah NA; Yam MF; Salman HM; Khan MH; Johns EJ
    Indian J Med Res; 2010 Jun; 131():786-92. PubMed ID: 20571167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of perindopril on renal medullary hemodynamics in genetically hypertensive rats.
    Liu KL; Lo M; Benzoni D
    Am J Hypertens; 2006 Jun; 19(6):617-22. PubMed ID: 16733235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.