BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 14506247)

  • 21. P2X7 receptor activates extracellular signal-regulated kinases ERK1 and ERK2 independently of Ca2+ influx.
    Amstrup J; Novak I
    Biochem J; 2003 Aug; 374(Pt 1):51-61. PubMed ID: 12747800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Akt down-regulates ERK1/2 nuclear localization and angiotensin II-induced cell proliferation through PEA-15.
    Gervais M; Dugourd C; Muller L; Ardidie C; Canton B; Loviconi L; Corvol P; Chneiweiss H; Monnot C
    Mol Biol Cell; 2006 Sep; 17(9):3940-51. PubMed ID: 16822839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The third cytoplasmic loop of the angiotensin II type 1 receptor exerts differential effects on extracellular signal-regulated kinase (ERK1/ERK2) and apoptosis via Ras- and Rap1-dependent pathways.
    Haendeler J; Ishida M; Hunyady L; Berk BC
    Circ Res; 2000 Apr; 86(7):729-36. PubMed ID: 10764405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of major ERK-related phosphorylation sites in Gab1.
    Lehr S; Kotzka J; Avci H; Sickmann A; Meyer HE; Herkner A; Muller-Wieland D
    Biochemistry; 2004 Sep; 43(38):12133-40. PubMed ID: 15379552
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stress- and mitogen-induced phosphorylation of the synapse-associated protein SAP90/PSD-95 by activation of SAPK3/p38gamma and ERK1/ERK2.
    Sabio G; Reuver S; Feijoo C; Hasegawa M; Thomas GM; Centeno F; Kuhlendahl S; Leal-Ortiz S; Goedert M; Garner C; Cuenda A
    Biochem J; 2004 May; 380(Pt 1):19-30. PubMed ID: 14741046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of phosphoinositide 3-kinase and the Cbl adaptor protein in coupling the alpha4beta1 integrin to mitogen-activated protein kinase signalling.
    Finkelstein LD; Shimizu Y
    Biochem J; 2000 Jan; 345 Pt 2(Pt 2):385-92. PubMed ID: 10620516
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biochemical and biological functions of the N-terminal, noncatalytic domain of extracellular signal-regulated kinase 2.
    Eblen ST; Catling AD; Assanah MC; Weber MJ
    Mol Cell Biol; 2001 Jan; 21(1):249-59. PubMed ID: 11113199
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stretch-induced mesangial cell ERK1/ERK2 activation is enhanced in high glucose by decreased dephosphorylation.
    Dlugosz JA; Munk S; Kapor-Drezgic J; Goldberg HJ; Fantus IG; Scholey JW; Whiteside CI
    Am J Physiol Renal Physiol; 2000 Oct; 279(4):F688-97. PubMed ID: 10997919
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantifying ERK2-protein interactions by fluorescence anisotropy: PEA-15 inhibits ERK2 by blocking the binding of DEJL domains.
    Callaway K; Rainey MA; Dalby KN
    Biochim Biophys Acta; 2005 Dec; 1754(1-2):316-23. PubMed ID: 16324895
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of a cytoplasmic-retention sequence in ERK2.
    Rubinfeld H; Hanoch T; Seger R
    J Biol Chem; 1999 Oct; 274(43):30349-52. PubMed ID: 10521408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural Studies of ERK2 Protein Complexes.
    Weijman JF; Riedl SJ; Mace PD
    Methods Mol Biol; 2017; 1487():53-63. PubMed ID: 27924558
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adhesion-dependent activation of the ERK1/2 cascade is by-passed in melanoma cells.
    Conner SR; Scott G; Aplin AE
    J Biol Chem; 2003 Sep; 278(36):34548-54. PubMed ID: 12821662
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A constitutively active and nuclear form of the MAP kinase ERK2 is sufficient for neurite outgrowth and cell transformation.
    Robinson MJ; Stippec SA; Goldsmith E; White MA; Cobb MH
    Curr Biol; 1998 Oct; 8(21):1141-50. PubMed ID: 9799732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cyclic AMP promotes cAMP-responsive element-binding protein-dependent induction of cellular inhibitor of apoptosis protein-2 and suppresses apoptosis of colon cancer cells through ERK1/2 and p38 MAPK.
    Nishihara H; Hwang M; Kizaka-Kondoh S; Eckmann L; Insel PA
    J Biol Chem; 2004 Jun; 279(25):26176-83. PubMed ID: 15078890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrin beta cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling.
    Calderwood DA; Fujioka Y; de Pereda JM; GarcĂ­a-Alvarez B; Nakamoto T; Margolis B; McGlade CJ; Liddington RC; Ginsberg MH
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2272-7. PubMed ID: 12606711
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recognition of ERK MAP kinase by PEA-15 reveals a common docking site within the death domain and death effector domain.
    Hill JM; Vaidyanathan H; Ramos JW; Ginsberg MH; Werner MH
    EMBO J; 2002 Dec; 21(23):6494-504. PubMed ID: 12456656
    [TBL] [Abstract][Full Text] [Related]  

  • 37. IQGAP1 binds ERK2 and modulates its activity.
    Roy M; Li Z; Sacks DB
    J Biol Chem; 2004 Apr; 279(17):17329-37. PubMed ID: 14970219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The phosphotyrosine binding-like domain of talin activates integrins.
    Calderwood DA; Yan B; de Pereda JM; Alvarez BG; Fujioka Y; Liddington RC; Ginsberg MH
    J Biol Chem; 2002 Jun; 277(24):21749-58. PubMed ID: 11932255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Studies on cell signaling immunomodulated murine peritoneal suppressor macrophages: LPS and PMA mediate the activation of RAF-1, MAPK p44 and MAPK p42 and p38 MAPK].
    Chang ZL; Lin MQ; Wang MZ; Yao Z
    Shi Yan Sheng Wu Xue Bao; 1997 Mar; 30(1):73-81. PubMed ID: 10684111
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The G(s)-coupled adenosine A(2B) receptor recruits divergent pathways to regulate ERK1/2 and p38.
    Schulte G; Fredholm BB
    Exp Cell Res; 2003 Oct; 290(1):168-76. PubMed ID: 14516797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.