BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 14506266)

  • 1. Catalysis, stereochemistry, and inhibition of ureidoglycolate lyase.
    McIninch JK; McIninch JD; May SW
    J Biol Chem; 2003 Dec; 278(50):50091-100. PubMed ID: 14506266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction versus subsite stereospecificity of peptidylglycine alpha-monooxygenase and peptidylamidoglycolate lyase, the two enzymes involved in peptide amidation.
    Ping D; Mounier CE; May SW
    J Biol Chem; 1995 Dec; 270(49):29250-5. PubMed ID: 7493955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Urea is a product of ureidoglycolate degradation in chickpea. Purification and characterization of the ureidoglycolate urea-lyase.
    Muñoz A; Piedras P; Aguilar M; Pineda M
    Plant Physiol; 2001 Feb; 125(2):828-34. PubMed ID: 11161040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyruvate-extended amino acid derivatives as highly potent inhibitors of carboxyl-terminal peptide amidation.
    Mounier CE; Shi J; Sirimanne SR; Chen BH; Moore AB; Gill-Woznichak MM; Ping D; May SW
    J Biol Chem; 1997 Feb; 272(8):5016-23. PubMed ID: 9030564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of unsaturated glucuronyl hydrolase, responsible for the degradation of glycosaminoglycan, from Bacillus sp. GL1 at 1.8 A resolution.
    Itoh T; Akao S; Hashimoto W; Mikami B; Murata K
    J Biol Chem; 2004 Jul; 279(30):31804-12. PubMed ID: 15148314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural insights into the substrate specificity of (s)-ureidoglycolate amidohydrolase and its comparison with allantoate amidohydrolase.
    Shin I; Han K; Rhee S
    J Mol Biol; 2014 Aug; 426(17):3028-40. PubMed ID: 25020232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ureidoglycollate lyase, a new metalloenzyme of peroxisomal urate degradation in marine fish liver.
    Takada Y; Noguchi T
    Biochem J; 1986 Apr; 235(2):391-7. PubMed ID: 3741398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amidation of bioactive peptides: the structure of the lyase domain of the amidating enzyme.
    Chufán EE; De M; Eipper BA; Mains RE; Amzel LM
    Structure; 2009 Jul; 17(7):965-73. PubMed ID: 19604476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and inhibition studies on substrate channelling in the bifunctional enzyme catalysing C-terminal amidation.
    Moore AB; May SW
    Biochem J; 1999 Jul; 341 ( Pt 1)(Pt 1):33-40. PubMed ID: 10377242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel glycoside hydrolase family 105: the structure of family 105 unsaturated rhamnogalacturonyl hydrolase complexed with a disaccharide in comparison with family 88 enzyme complexed with the disaccharide.
    Itoh T; Ochiai A; Mikami B; Hashimoto W; Murata K
    J Mol Biol; 2006 Jul; 360(3):573-85. PubMed ID: 16781735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the absolute configuration of alpha-hydroxyglycine derivatives by enzymatic conversion and chiral high-performance liquid chromatography.
    McIninch JK; Geiser F; Prickett KB; May SW
    J Chromatogr A; 1998 Dec; 828(1-2):191-8. PubMed ID: 9916305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of ureidoglycolate in French bean (Phaseolus vulgaris) is catalysed by a ubiquitous ureidoglycolate urea-lyase.
    Muñoz A; Raso MJ; Pineda M; Piedras P
    Planta; 2006 Jun; 224(1):175-84. PubMed ID: 16333637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential features of the catalytic core of peptidyl-alpha-hydroxyglycine alpha-amidating lyase.
    Kolhekar AS; Bell J; Shiozaki EN; Jin L; Keutmann HT; Hand TA; Mains RE; Eipper BA
    Biochemistry; 2002 Oct; 41(41):12384-94. PubMed ID: 12369828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional and structural characterization of peptidylamidoglycolate lyase, the enzyme catalyzing the second step in peptide amidation.
    Katopodis AG; Ping DS; Smith CE; May SW
    Biochemistry; 1991 Jun; 30(25):6189-94. PubMed ID: 2059626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance liquid chromatographic enantiomeric separation of an enzyme inhibitor which possesses both a chiral center and tautomeric moieties.
    Feng J; May SW
    J Chromatogr A; 2001 Jan; 905(1-2):103-9. PubMed ID: 11206776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate specificity of streptococcal unsaturated glucuronyl hydrolases for sulfated glycosaminoglycan.
    Maruyama Y; Nakamichi Y; Itoh T; Mikami B; Hashimoto W; Murata K
    J Biol Chem; 2009 Jul; 284(27):18059-69. PubMed ID: 19416976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A continuous spectrophotometric assay for ureidoglycolase activity with lactate dehydrogenase or glyoxylate reductase as coupling enzyme.
    Pineda M; Piedras P; Cárdenas J
    Anal Biochem; 1994 Nov; 222(2):450-5. PubMed ID: 7864371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and kinetics of phosphonopyruvate hydrolase from Variovorax sp. Pal2: new insight into the divergence of catalysis within the PEP mutase/isocitrate lyase superfamily.
    Chen CC; Han Y; Niu W; Kulakova AN; Howard A; Quinn JP; Dunaway-Mariano D; Herzberg O
    Biochemistry; 2006 Sep; 45(38):11491-504. PubMed ID: 16981709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and stereochemical studies on novel inactivators of C-terminal amidation.
    Feng J; Shi J; Sirimanne SR; Mounier-Lee CE; May SW
    Biochem J; 2000 Sep; 350 Pt 2(Pt 2):521-30. PubMed ID: 10947967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic mechanism and intrinsic isotope effects for the peptidylglycine alpha-amidating enzyme reaction.
    Francisco WA; Merkler DJ; Blackburn NJ; Klinman JP
    Biochemistry; 1998 Jun; 37(22):8244-52. PubMed ID: 9609721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.