These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 14506306)

  • 21. Hormonal and pharmacological modification of plasma potassium homeostasis.
    Clausen T
    Fundam Clin Pharmacol; 2010 Oct; 24(5):595-605. PubMed ID: 20618871
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantification of Na+,K+ pumps and their transport rate in skeletal muscle: functional significance.
    Clausen T
    J Gen Physiol; 2013 Oct; 142(4):327-45. PubMed ID: 24081980
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of endurance training status and sex differences on Na+,K+-pump mRNA expression, content and maximal activity in human skeletal muscle.
    Murphy KT; Aughey RJ; Petersen AC; Clark SA; Goodman C; Hawley JA; Cameron-Smith D; Snow RJ; McKenna MJ
    Acta Physiol (Oxf); 2007 Mar; 189(3):259-69. PubMed ID: 17305706
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuropathy, axonal Na+/K+ pump function and activity-dependent excitability changes in end-stage kidney disease.
    Krishnan AV; Phoon RK; Pussell BA; Charlesworth JA; Bostock H; Kiernan MC
    Clin Neurophysiol; 2006 May; 117(5):992-9. PubMed ID: 16516547
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Muscle K+, Na+, and Cl disturbances and Na+-K+ pump inactivation: implications for fatigue.
    McKenna MJ; Bangsbo J; Renaud JM
    J Appl Physiol (1985); 2008 Jan; 104(1):288-95. PubMed ID: 17962569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Altered expression and insulin-induced trafficking of Na+-K+-ATPase in rat skeletal muscle: effects of high-fat diet and exercise.
    Galuska D; Kotova O; Barrès R; Chibalina D; Benziane B; Chibalin AV
    Am J Physiol Endocrinol Metab; 2009 Jul; 297(1):E38-49. PubMed ID: 19366873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Na(+), K(+)-ATPase content in skeletal muscle of dogs with pituitary-dependent hyperadrenocorticism.
    Schotanus BA; Meij BP; Vos IH; Kooistra HS; Everts ME
    Domest Anim Endocrinol; 2006 May; 30(4):320-32. PubMed ID: 16202554
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Frontiers: skeletal muscle sodium pump regulation: a translocation paradigm.
    Benziane B; Chibalin AV
    Am J Physiol Endocrinol Metab; 2008 Sep; 295(3):E553-8. PubMed ID: 18430962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of K+ channels in the force recovery elicited by Na+-K+ pump stimulation in Ba2+-paralysed rat skeletal muscle.
    Clausen T; Overgaard K
    J Physiol; 2000 Sep; 527 Pt 2(Pt 2):325-32. PubMed ID: 10970433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relations between excitability and contractility in rat soleus muscle: role of the Na+-K+ pump and Na+/K+ gradients.
    Overgaard K; Nielsen OB; Flatman JA; Clausen T
    J Physiol; 1999 Jul; 518(Pt 1):215-25. PubMed ID: 10373703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Excitation-induced activation of the Na(+)-K+ pump in rat skeletal muscle.
    Everts ME; Clausen T
    Am J Physiol; 1994 Apr; 266(4 Pt 1):C925-34. PubMed ID: 8178965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Na+,K+-pump stimulation improves contractility in isolated muscles of mice with hyperkalemic periodic paralysis.
    Clausen T; Nielsen OB; Clausen JD; Pedersen TH; Hayward LJ
    J Gen Physiol; 2011 Jul; 138(1):117-30. PubMed ID: 21708955
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Na+-K+ pump stimulation restores carbacholine-induced loss of excitability and contractility in rat skeletal muscle.
    Macdonald WA; Nielsen OB; Clausen T
    J Physiol; 2005 Mar; 563(Pt 2):459-69. PubMed ID: 15649983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activity-dependent excitability changes suggest Na+/K+ pump dysfunction in diabetic neuropathy.
    Krishnan AV; Lin CS; Kiernan MC
    Brain; 2008 May; 131(Pt 5):1209-16. PubMed ID: 18362098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of Na(+)-K+ pump activity in contracting rat muscle.
    Nielsen OB; Clausen T
    J Physiol; 1997 Sep; 503 ( Pt 3)(Pt 3):571-81. PubMed ID: 9379412
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of Na(+)-K+ pump and Na+ channel concentrations in the contractility of rat soleus muscle.
    Harrison AP; Nielsen OB; Clausen T
    Am J Physiol; 1997 May; 272(5 Pt 2):R1402-8. PubMed ID: 9176330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms and consequences of Na+,K+-pump regulation by insulin and leptin.
    Sweeney G; Klip A
    Cell Mol Biol (Noisy-le-grand); 2001 Mar; 47(2):363-72. PubMed ID: 11355012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction between Na+/K+-pump and Na+/Ca2+-exchanger modulates intercellular communication.
    Matchkov VV; Gustafsson H; Rahman A; Briggs Boedtkjer DM; Gorintin S; Hansen AK; Bouzinova EV; Praetorius HA; Aalkjaer C; Nilsson H
    Circ Res; 2007 Apr; 100(7):1026-35. PubMed ID: 17347477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loss of potassium from muscle during moderate exercise in humans: a result of insufficient activation of the Na+-K+-pump?
    Verburg E; Hallén J; Sejersted OM; Vøllestad NK
    Acta Physiol Scand; 1999 Apr; 165(4):357-67. PubMed ID: 10350230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fuzzy space and control of Na+, K(+)-pump rate in heart and skeletal muscle.
    Semb SO; Sejersted OM
    Acta Physiol Scand; 1996 Mar; 156(3):213-25. PubMed ID: 8729681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.