These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 14506864)
61. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. Mogk A; Homuth G; Scholz C; Kim L; Schmid FX; Schumann W EMBO J; 1997 Aug; 16(15):4579-90. PubMed ID: 9303302 [TBL] [Abstract][Full Text] [Related]
62. MreC and MreD Proteins Are Not Required for Growth of Staphylococcus aureus. Tavares AC; Fernandes PB; Carballido-López R; Pinho MG PLoS One; 2015; 10(10):e0140523. PubMed ID: 26470021 [TBL] [Abstract][Full Text] [Related]
63. MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis. Hussain S; Wivagg CN; Szwedziak P; Wong F; Schaefer K; Izoré T; Renner LD; Holmes MJ; Sun Y; Bisson-Filho AW; Walker S; Amir A; Löwe J; Garner EC Elife; 2018 Feb; 7():. PubMed ID: 29469806 [TBL] [Abstract][Full Text] [Related]
64. A new oxygen-regulated operon in Escherichia coli comprises the genes for a putative third cytochrome oxidase and for pH 2.5 acid phosphatase (appA). Dassa J; Fsihi H; Marck C; Dion M; Kieffer-Bontemps M; Boquet PL Mol Gen Genet; 1991 Oct; 229(3):341-52. PubMed ID: 1658595 [TBL] [Abstract][Full Text] [Related]
66. In vivo and in vitro characterization of the secA gene product of Bacillus subtilis. Takamatsu H; Fuma S; Nakamura K; Sadaie Y; Shinkai A; Matsuyama S; Mizushima S; Yamane K J Bacteriol; 1992 Jul; 174(13):4308-16. PubMed ID: 1385592 [TBL] [Abstract][Full Text] [Related]
67. Bacillus stearothermophilus cell shape determinant gene, mreC and mreD, and their stimulation of protease production in Bacillus subtilis. Kubo M; Pierro DJ; Mochizuki Y; Kojima T; Yamazaki T; Satoh S; Takizawa N; Kiyohara H Biosci Biotechnol Biochem; 1996 Feb; 60(2):271-6. PubMed ID: 9063975 [TBL] [Abstract][Full Text] [Related]
68. Interaction of enzymes of the tricarboxylic acid cycle in Bacillus subtilis and Escherichia coli: a comparative study. Jung T; Mack M FEMS Microbiol Lett; 2018 Apr; 365(8):. PubMed ID: 29546354 [TBL] [Abstract][Full Text] [Related]
70. A magnesium-dependent mreB null mutant: implications for the role of mreB in Bacillus subtilis. Formstone A; Errington J Mol Microbiol; 2005 Mar; 55(6):1646-57. PubMed ID: 15752190 [TBL] [Abstract][Full Text] [Related]
71. YpdC determines site-1 degradation in regulated intramembrane proteolysis of the RsiW anti-sigma factor of Bacillus subtilis. Heinrich J; Wiegert T Mol Microbiol; 2006 Oct; 62(2):566-79. PubMed ID: 17020587 [TBL] [Abstract][Full Text] [Related]
72. MreBCD-associated Cytoskeleton is Required for Proper Segregation of the Chromosomal Terminus during the Division Cycle of Escherichia Coli. Huo YJ; Qiao L; Zheng XW; Cui C; Ma YF; Lu F Chin Med J (Engl); 2015 May; 128(9):1209-14. PubMed ID: 25947405 [TBL] [Abstract][Full Text] [Related]
73. Cloning and characterization of Bacillus subtilis homologs of Escherichia coli cell division genes ftsZ and ftsA. Beall B; Lowe M; Lutkenhaus J J Bacteriol; 1988 Oct; 170(10):4855-64. PubMed ID: 3139638 [TBL] [Abstract][Full Text] [Related]
75. The bacterial Min system. Rowlett VW; Margolin W Curr Biol; 2013 Jul; 23(13):R553-6. PubMed ID: 23845239 [TBL] [Abstract][Full Text] [Related]
76. [Study of adhesive properties of bacteria with promise for creation of complex probiotic preparations]. Tsaruk'ianova IG; Smirnova EV Mikrobiol Z; 2005; 67(2):88-95. PubMed ID: 16018221 [TBL] [Abstract][Full Text] [Related]
77. Interaction of Bacillus subtilis CsaA with SecA and precursor proteins. Müller JP; Ozegowski J; Vettermann S; Swaving J; Van Wely KH; Driessen AJ Biochem J; 2000 Jun; 348 Pt 2(Pt 2):367-73. PubMed ID: 10816431 [TBL] [Abstract][Full Text] [Related]
78. Anchoring proteins to Escherichia coli cell membranes using hydrophobic anchors derived from a Bacillus subtilis integral membrane protein. Yang C; Xie H; Zhang JK; Su BL Protein Expr Purif; 2012 Sep; 85(1):60-5. PubMed ID: 22750396 [TBL] [Abstract][Full Text] [Related]
79. Characterization of the depletion of 2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase in Escherichia coli and Bacillus subtilis. Campbell TL; Brown ED J Bacteriol; 2002 Oct; 184(20):5609-18. PubMed ID: 12270818 [TBL] [Abstract][Full Text] [Related]
80. Iron-hydroxamate uptake systems in Bacillus subtilis: identification of a lipoprotein as part of a binding protein-dependent transport system. Schneider R; Hantke K Mol Microbiol; 1993 Apr; 8(1):111-21. PubMed ID: 8388528 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]