These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 14507195)
41. Purification and characterization of an NADH oxidase from extremely thermophilic anaerobic bacterium Thermotoga hypogea. Yang X; Ma K Arch Microbiol; 2005 Aug; 183(5):331-7. PubMed ID: 15912375 [TBL] [Abstract][Full Text] [Related]
42. [Effect of quinones on enzymatic bioluminescence of NADH-dependent systems]. Kudriasheva NS; Esimbekova EN; Kudinova IIu; Kratasiuk VA; Stom DU Prikl Biokhim Mikrobiol; 2000; 36(4):474-8. PubMed ID: 10994199 [TBL] [Abstract][Full Text] [Related]
43. Engineered dehydrogenase biocatalysts for non-natural amino acids: efficient isolation of the D-enantiomer from racemic mixtures. Paradisi F; Conway PA; Maguire AR; Engel PC Org Biomol Chem; 2008 Oct; 6(19):3611-5. PubMed ID: 19082164 [TBL] [Abstract][Full Text] [Related]
44. Inhibition and pH dependence of phosphite dehydrogenase. Relyea HA; Vrtis JM; Woodyer R; Rimkus SA; van der Donk WA Biochemistry; 2005 May; 44(17):6640-9. PubMed ID: 15850397 [TBL] [Abstract][Full Text] [Related]
45. Monitoring and modeling of the reaction dynamics in the valine/leucine synthesis pathway in Corynebacterium glutamicum. Magnus JB; Hollwedel D; Oldiges M; Takors R Biotechnol Prog; 2006; 22(4):1071-83. PubMed ID: 16889382 [TBL] [Abstract][Full Text] [Related]
46. A resorufin-based fluorescent assay for quantifying NADH. Batchelor RH; Zhou M Anal Biochem; 2002 Jun; 305(1):118-9. PubMed ID: 12018954 [No Abstract] [Full Text] [Related]
47. Postcolumn co-immobilized leucine dehydrogenase-NADH oxidase reactor for the determination of branched-chain amino acids by high-performance liquid chromatography with chemiluminescence detection. Kiba N; Oyama Y; Kato A; Furusawa M J Chromatogr A; 1996 Feb; 724(1-2):355-7. PubMed ID: 8819797 [TBL] [Abstract][Full Text] [Related]
48. Stereochemistry of the hydrogen transfer to NAD catalyzed by (S)alanine dehydrogenase from Bacillus subtilis. Alizade MA; Bressler R; Brendel K Biochim Biophys Acta; 1975 Jul; 397(1):5-8. PubMed ID: 167853 [TBL] [Abstract][Full Text] [Related]
49. Highly selective asymmetric acetate aldol reactions of an N-acetyl thiazolidinethione reagent. Zhang Y; Phillips AJ; Sammakia T Org Lett; 2004 Jan; 6(1):23-5. PubMed ID: 14703341 [TBL] [Abstract][Full Text] [Related]
50. Studies on L-amino acid oxidase. I. Oxygen dependent activation of L-amino acid oxidase by chlorpromazine. Siva Sankar DV; Fireman BI Res Commun Chem Pathol Pharmacol; 1970 Mar; 1(2):288-301. PubMed ID: 5524324 [No Abstract] [Full Text] [Related]
51. A one-pot system for production of L-2-aminobutyric acid from L-threonine by L-threonine deaminase and a NADH-regeneration system based on L-leucine dehydrogenase and formate dehydrogenase. Tao R; Jiang Y; Zhu F; Yang S Biotechnol Lett; 2014 Apr; 36(4):835-41. PubMed ID: 24322776 [TBL] [Abstract][Full Text] [Related]
52. One-pot synthesis of L-Fructose using coupled multienzyme systems based on rhamnulose-1-phosphate aldolase. Franke D; Machajewski T; Hsu CC; Wong CH J Org Chem; 2003 Aug; 68(17):6828-31. PubMed ID: 12919060 [TBL] [Abstract][Full Text] [Related]
53. Drosophila alcohol dehydrogenase: acetate-enzyme interactions and novel insights into the effects of electrostatics on catalysis. Benach J; Winberg JO; Svendsen JS; Atrian S; Gonzàlez-Duarte R; Ladenstein R J Mol Biol; 2005 Jan; 345(3):579-98. PubMed ID: 15581900 [TBL] [Abstract][Full Text] [Related]
54. [High efficient co-expression of leucine dehydrogenase and glucose dehydrogenase in Escherichia coli]. Yang X; Mu X; Nie Y; Xu Y Wei Sheng Wu Xue Bao; 2016 Nov; 56(11):1709-18. PubMed ID: 29741833 [TBL] [Abstract][Full Text] [Related]
55. Role of the His57-Glu214 ionic couple located in the active site of Mycobacterium tuberculosis FprA. Pennati A; Razeto A; de Rosa M; Pandini V; Vanoni MA; Mattevi A; Coda A; Aliverti A; Zanetti G Biochemistry; 2006 Jul; 45(29):8712-20. PubMed ID: 16846214 [TBL] [Abstract][Full Text] [Related]
56. A novel whole-cell biocatalyst with NAD+ regeneration for production of chiral chemicals. Xiao Z; Lv C; Gao C; Qin J; Ma C; Liu Z; Liu P; Li L; Xu P PLoS One; 2010 Jan; 5(1):e8860. PubMed ID: 20126645 [TBL] [Abstract][Full Text] [Related]
57. Nanotube-supported bioproduction of 4-hydroxy-2-butanone via in situ cofactor regeneration. Wang L; Zhang H; Ching CB; Chen Y; Jiang R Appl Microbiol Biotechnol; 2012 Jun; 94(5):1233-41. PubMed ID: 22116631 [TBL] [Abstract][Full Text] [Related]
58. Using enzyme inhibition as a high throughput method to measure the enantiomeric excess of a chiral sulfoxide. Sprout CM; Seto CT Org Lett; 2005 Oct; 7(22):5099-102. PubMed ID: 16235967 [TBL] [Abstract][Full Text] [Related]