BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 14507461)

  • 1. An intracellular mechanism of aluminum tolerance associated with high antioxidant status in cultured tobacco cells.
    Devi SR; Yamamoto Y; Matsumoto H
    J Inorg Biochem; 2003 Sep; 97(1):59-68. PubMed ID: 14507461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells.
    Yamamoto Y; Kobayashi Y; Devi SR; Rikiishi S; Matsumoto H
    Plant Physiol; 2002 Jan; 128(1):63-72. PubMed ID: 11788753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dry Priming of Maize Seeds Reduces Aluminum Stress.
    Alcântara BK; Machemer-Noonan K; Silva Júnior FG; Azevedo RA
    PLoS One; 2015; 10(12):e0145742. PubMed ID: 26714286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OsAlR3 regulates aluminum tolerance through promoting the secretion of organic acids and the expression of antioxidant genes in rice.
    Su C; Wang J; Feng J; Jiang S; Man F; Jiang L; Zhao M
    BMC Plant Biol; 2024 Jun; 24(1):618. PubMed ID: 38937693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in antioxidant gene expression and induction of oxidative stress in pea (Pisum sativum L.) under Al stress.
    Panda SK; Matsumoto H
    Biometals; 2010 Aug; 23(4):753-62. PubMed ID: 20505982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. γ-Aminobutyric acid (GABA) priming alleviates acid-aluminum toxicity to roots of creeping bentgrass via enhancements in antioxidant defense and organic metabolites remodeling.
    Zhou M; Huang C; Lin J; Yuan Y; Lin L; Zhou J; Li Z
    Planta; 2024 Jun; 260(1):33. PubMed ID: 38896325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The formate dehydrogenase enhances aluminum tolerance of tobacco.
    Xie Y; Wei Y; Han R; Yu S; Xu H; Jiang C; Yu Y
    J Genet; 2023; 102():. PubMed ID: 37850386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The involvement of lipid peroxide-derived aldehydes in aluminum toxicity of tobacco roots.
    Yin L; Mano J; Wang S; Tsuji W; Tanaka K
    Plant Physiol; 2010 Mar; 152(3):1406-17. PubMed ID: 20023145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2,4-D mediated moderation of aluminum tolerance in
    Dolui D; Hasanuzzaman M; Fujita M; Adak MK
    Int J Phytoremediation; 2024; 26(1):27-44. PubMed ID: 37259532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of oxygen stress and energy availability on membrane stability of plant cells.
    Rawyler A; Arpagaus S; Braendle R
    Ann Bot; 2002 Oct; 90(4):499-507. PubMed ID: 12324274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycosaminoglycans reduce oxidative damage induced by copper (Cu+2), iron (Fe+2) and hydrogen peroxide (H2O2) in human fibroblast cultures.
    Campo GM; D'Ascola A; Avenoso A; Campo S; Ferlazzo AM; Micali C; Zanghì L; Calatroni A
    Glycoconj J; 2004; 20(2):133-41. PubMed ID: 15001845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid peroxides and glutathione status in human progenitor mononuclear (U937) cells following exposure to low doses of nickel and copper.
    Boadi WY; Harris S; Anderson JB; Adunyah SE
    Drug Chem Toxicol; 2013 Apr; 36(2):155-62. PubMed ID: 22632594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper stress induces biosynthesis of octadecanoid and eicosanoid oxygenated derivatives in the brown algal kelp Laminaria digitata.
    Ritter A; Goulitquer S; Salaün JP; Tonon T; Correa JA; Potin P
    New Phytol; 2008; 180(4):809-21. PubMed ID: 18823315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of post-anoxia stress on membrane lipids of anoxia-pretreated potato cells. A re-appraisal.
    Pavelic D; Arpagaus S; Rawyler A; Brändle R
    Plant Physiol; 2000 Nov; 124(3):1285-92. PubMed ID: 11080304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aluminum toxicity recovery processes in root apices. Possible association with oxidative stress.
    Matsumoto H; Motoda H
    Plant Sci; 2012 Apr; 185-186():1-8. PubMed ID: 22325861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Scanning and Morpho-Physiological Dissection of Component Mechanism in Lens Species in Response to Aluminium Stress.
    Singh D; Pal M; Singh CK; Taunk J; Jain P; Chaturvedi AK; Maurya S; Karwa S; Singh R; Tomar RS; Nongthombam R; Chongtham N; Singh MP
    PLoS One; 2016; 11(7):e0160073. PubMed ID: 27467074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aluminum toxicity and Ca depletion may enhance cell death of tobacco cells via similar syndrome.
    Basset RA; Matsumoto H
    Plant Signal Behav; 2008 May; 3(5):290-5. PubMed ID: 19513221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The NAC transcription factor ANAC017 regulates aluminum tolerance by regulating the cell wall-modifying genes.
    Tao Y; Wan JX; Liu YS; Yang XZ; Shen RF; Zhu XF
    Plant Physiol; 2022 Aug; 189(4):2517-2534. PubMed ID: 35512200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological Role of Aerobic Fermentation Constitutively Expressed in an Aluminum-Tolerant Cell Line of Tobacco (Nicotiana tabacum).
    Tsuchiya Y; Nakamura T; Izumi Y; Okazaki K; Shinano T; Kubo Y; Katsuhara M; Sasaki T; Yamamoto Y
    Plant Cell Physiol; 2021 Nov; 62(9):1460-1477. PubMed ID: 34184745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric Oxide Is Involved in the Regulation of the Ascorbate-Glutathione Cycle Induced by the Appropriate Ammonium: Nitrate to Mitigate Low Light Stress in
    Hu L; Li Y; Wu Y; Lv J; Dawuda MM; Tang Z; Liao W; Calderón-Urrea A; Xie J; Yu J
    Plants (Basel); 2019 Nov; 8(11):. PubMed ID: 31717921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.