BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 14507730)

  • 1. Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns.
    Hyatt CJ; Mironov SF; Wellner M; Berenfeld O; Popp AK; Weitz DA; Jalife J; Pertsov AM
    Biophys J; 2003 Oct; 85(4):2673-83. PubMed ID: 14507730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods.
    Bernus O; Wellner M; Mironov SF; Pertsov AM
    Phys Med Biol; 2005 Jan; 50(2):215-29. PubMed ID: 15742940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What can we learn from the optically recorded epicardial action potential?
    Pertsov AM; Zemlin CW; Hyatt CJ; Bernus O
    Biophys J; 2006 Nov; 91(10):3959-60. PubMed ID: 16935958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intra-myocardial cusp waves and their manifestation in optical mapping signals.
    Bernus O; Zemlin CW; Matiukas A; Hyatt CJ; Pertsov AM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1564-7. PubMed ID: 17946905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstructing subsurface electrical wave orientation from cardiac epi-fluorescence recordings: Monte Carlo versus diffusion approximation.
    Hyatt CJ; Zemlin CW; Smith RM; Matiukas A; Pertsov AM; Bernus O
    Opt Express; 2008 Sep; 16(18):13758-72. PubMed ID: 18772987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence imaging of cardiac propagation: spectral properties and filtering of optical action potentials.
    Mironov SF; Vetter FJ; Pertsov AM
    Am J Physiol Heart Circ Physiol; 2006 Jul; 291(1):H327-35. PubMed ID: 16428336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of shock-end virtual electrode polarisation as a direct result of 3D fluorescent photon scattering.
    Bishop MJ; Rodriguez B; Trayanova N; Gavaghan DJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1556-9. PubMed ID: 17946049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracting surface activation time from the optically recorded action potential in three-dimensional myocardium.
    Walton RD; Smith RM; Mitrea BG; White E; Bernus O; Pertsov AM
    Biophys J; 2012 Jan; 102(1):30-8. PubMed ID: 22225795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depth-resolved optical imaging of transmural electrical propagation in perfused heart.
    Hillman EM; Bernus O; Pease E; Bouchard MB; Pertsov A
    Opt Express; 2007 Dec; 15(26):17827-41. PubMed ID: 18592044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inference of intramural wavefront orientation from optical recordings in realistic whole-heart models.
    Bishop MJ; Rodriguez B; Trayanova N; Gavaghan DJ
    Biophys J; 2006 Nov; 91(10):3957-8. PubMed ID: 16935956
    [No Abstract]   [Full Text] [Related]  

  • 11. Evaluation of excitation propagation in the rabbit heart: optical mapping and transmural microelectrode recordings.
    Mačianskienė R; Martišienė I; Navalinskas A; Vosyliūtė R; Treinys R; Vaidelytė B; Benetis R; Jurevičius J
    PLoS One; 2015; 10(4):e0123050. PubMed ID: 25881157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of 3D MR image-based computer models of pathologic hearts, augmented with histology and optical fluorescence imaging to characterize action potential propagation.
    Pop M; Sermesant M; Liu G; Relan J; Mansi T; Soong A; Peyrat JM; Truong MV; Fefer P; McVeigh ER; Delingette H; Dick AJ; Ayache N; Wright GA
    Med Image Anal; 2012 Feb; 16(2):505-23. PubMed ID: 22209561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method for the three-dimensional localization of intramyocardial excitation centers using optical imaging.
    Khait VD; Bernus O; Mironov SF; Pertsov AM
    J Biomed Opt; 2006; 11(3):34007. PubMed ID: 16822057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examination of depth-weighted optical signals during cardiac optical mapping: a simulation study.
    Xu Z; Zhang Z; Jin Y; Wang J
    Comput Biol Med; 2007 May; 37(5):732-8. PubMed ID: 16987506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photon scattering effects in optical mapping of propagation and arrhythmogenesis in the heart.
    Bishop MJ; Gavaghan DJ; Trayanova NA; Rodriguez B
    J Electrocardiol; 2007; 40(6 Suppl):S75-80. PubMed ID: 17993334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional surface reconstruction and panoramic optical mapping of large hearts.
    Kay MW; Amison PM; Rogers JM
    IEEE Trans Biomed Eng; 2004 Jul; 51(7):1219-29. PubMed ID: 15248538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epicardial and intramural excitation during ventricular pacing: effect of myocardial structure.
    Taccardi B; Punske BB; Macchi E; Macleod RS; Ershler PR
    Am J Physiol Heart Circ Physiol; 2008 Apr; 294(4):H1753-66. PubMed ID: 18263708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulation of 3D mapping of cardiac electrical activity with spinning slit confocal optics.
    Hwang SM; Choi BR; Salama G
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1093-7. PubMed ID: 17946022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fusion of optical imaging and MRI for the evaluation and adjustment of macroscopic models of cardiac electrophysiology: a feasibility study.
    Pop M; Sermesant M; Lepiller D; Truong MV; McVeigh ER; Crystal E; Dick A; Delingette H; Ayache N; Wright GA
    Med Image Anal; 2009 Apr; 13(2):370-80. PubMed ID: 18768344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial localization of cardiac optical mapping with multiphoton excitation.
    Ramshesh VK; Knisley SB
    J Biomed Opt; 2003 Apr; 8(2):253-9. PubMed ID: 12683851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.