These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 14507901)

  • 1. Direct modulation of rod photoreceptor responsiveness through a Mel(1c) melatonin receptor in transgenic Xenopus laevis retina.
    Wiechmann AF; Vrieze MJ; Dighe R; Hu Y
    Invest Ophthalmol Vis Sci; 2003 Oct; 44(10):4522-31. PubMed ID: 14507901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential distribution of Mel(1a) and Mel(1c) melatonin receptors in Xenopus laevis retina.
    Wiechmann AF
    Exp Eye Res; 2003 Jan; 76(1):99-106. PubMed ID: 12589779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melatonin receptor RNA is expressed in photoreceptors and displays a diurnal rhythm in Xenopus retina.
    Wiechmann AF; Smith AR
    Brain Res Mol Brain Res; 2001 Jul; 91(1-2):104-11. PubMed ID: 11457497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple cell targets for melatonin action in Xenopus laevis retina: distribution of melatonin receptor immunoreactivity.
    Wiechmann AF; Wirsig-Wiechmann CR
    Vis Neurosci; 2001; 18(5):695-702. PubMed ID: 11925005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A functional rhodopsin-green fluorescent protein fusion protein localizes correctly in transgenic Xenopus laevis retinal rods and is expressed in a time-dependent pattern.
    Moritz OL; Tam BM; Papermaster DS; Nakayama T
    J Biol Chem; 2001 Jul; 276(30):28242-51. PubMed ID: 11350960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arrestin migrates in photoreceptors in response to light: a study of arrestin localization using an arrestin-GFP fusion protein in transgenic frogs.
    Peterson JJ; Tam BM; Moritz OL; Shelamer CL; Dugger DR; McDowell JH; Hargrave PA; Papermaster DS; Smith WC
    Exp Eye Res; 2003 May; 76(5):553-63. PubMed ID: 12697419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors.
    Perkins BD; Kainz PM; O'Malley DM; Dowling JE
    Vis Neurosci; 2002; 19(4):257R-264R. PubMed ID: 12511087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential contribution of rod and cone circadian clocks in driving retinal melatonin rhythms in Xenopus.
    Hayasaka N; LaRue SI; Green CB
    PLoS One; 2010 Dec; 5(12):e15599. PubMed ID: 21187976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of Mel1b melatonin receptor-like immunoreactivity in ocular tissues of Xenopus laevis.
    Wiechmann AF; Udin SB; Summers Rada JA
    Exp Eye Res; 2004 Oct; 79(4):585-94. PubMed ID: 15381042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of kinesin II function using a dominant negative-acting transgene in Xenopus laevis rods results in photoreceptor degeneration.
    Lin-Jones J; Parker E; Wu M; Knox BE; Burnside B
    Invest Ophthalmol Vis Sci; 2003 Aug; 44(8):3614-21. PubMed ID: 12882815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors.
    Perkins BD; Kainz PM; O'Malley DM; Dowling JE
    Vis Neurosci; 2002; 19(3):257-64. PubMed ID: 12392175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melatonin receptor RNA expression in Xenopus retina.
    Wiechmann AF; Campbell LD; Defoe DM
    Brain Res Mol Brain Res; 1999 Jan; 63(2):297-303. PubMed ID: 9878796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential distribution of melatonin receptors in the pituitary gland of Xenopus laevis.
    Wiechmann AF; Vrieze MJ; Wirsig-Wiechmann CR
    Anat Embryol (Berl); 2003 Mar; 206(4):291-9. PubMed ID: 12649727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled rod cell ablation in transgenic Xenopus laevis.
    Hamm LM; Tam BM; Moritz OL
    Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):885-92. PubMed ID: 18836175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo disruption of Xenopus CLOCK in the retinal photoreceptor cells abolishes circadian melatonin rhythmicity without affecting its production levels.
    Hayasaka N; LaRue SI; Green CB
    J Neurosci; 2002 Mar; 22(5):1600-7. PubMed ID: 11880490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MT(1) melatonin receptor in the human retina: expression and localization.
    Scher J; Wankiewicz E; Brown GM; Fujieda H
    Invest Ophthalmol Vis Sci; 2002 Mar; 43(3):889-97. PubMed ID: 11867612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role for cytoskeletal elements in the light-driven translocation of proteins in rod photoreceptors.
    Peterson JJ; Orisme W; Fellows J; McDowell JH; Shelamer CL; Dugger DR; Smith WC
    Invest Ophthalmol Vis Sci; 2005 Nov; 46(11):3988-98. PubMed ID: 16249472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent photoreceptors of transgenic Xenopus laevis imaged in vivo by two microscopy techniques.
    Moritz OL; Tam BM; Knox BE; Papermaster DS
    Invest Ophthalmol Vis Sci; 1999 Dec; 40(13):3276-80. PubMed ID: 10586953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cone survival despite rod degeneration in XOPS-mCFP transgenic zebrafish.
    Morris AC; Schroeter EH; Bilotta J; Wong RO; Fadool JM
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4762-71. PubMed ID: 16303977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melatonin receptor mRNA and protein expression in Xenopus laevis nonpigmented ciliary epithelial cells.
    Wiechmann AF; Wirsig-Wiechmann CR
    Exp Eye Res; 2001 Nov; 73(5):617-23. PubMed ID: 11747362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.