These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 14507990)

  • 1. Frequency-dependent regulation of afferent transmission in the feeding circuitry of Aplysia.
    Evans CG; Jing J; Proekt A; Rosen SC; Cropper EC
    J Neurophysiol; 2003 Dec; 90(6):3967-77. PubMed ID: 14507990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of afferent transmission in the feeding circuitry of aplysia: persistence can be as important as size.
    Evans CG; Romero A; Cropper EC
    J Neurophysiol; 2005 May; 93(5):2940-9. PubMed ID: 15625089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Afferent-induced changes in rhythmic motor programs in the feeding circuitry of aplysia.
    Shetreat-Klein AN; Cropper EC
    J Neurophysiol; 2004 Oct; 92(4):2312-22. PubMed ID: 15175374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Outputs of radula mechanoafferent neurons in Aplysia are modulated by motor neurons, interneurons, and sensory neurons.
    Rosen SC; Miller MW; Cropper EC; Kupfermann I
    J Neurophysiol; 2000 Mar; 83(3):1621-36. PubMed ID: 10712484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanoafferent neuron with an inexcitable somatic region: consequences for the regulation of spike propagation and afferent transmission.
    Evans CG; Ludwar BCh; Cropper EC
    J Neurophysiol; 2007 Apr; 97(4):3126-30. PubMed ID: 17267750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diverse synaptic connections between peptidergic radula mechanoafferent neurons and neurons in the feeding system of Aplysia.
    Rosen SC; Miller MW; Evans CG; Cropper EC; Kupfermann I
    J Neurophysiol; 2000 Mar; 83(3):1605-20. PubMed ID: 10712483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of spike initiation and propagation in an Aplysia sensory neuron: gating-in via central depolarization.
    Evans CG; Jing J; Rosen SC; Cropper EC
    J Neurosci; 2003 Apr; 23(7):2920-31. PubMed ID: 12684479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of a serotonergic extrinsic modulatory neuron (MCC) on radula mechanoafferent function in Aplysia.
    Alexeeva V; Borovikov D; Miller MW; Rosen SC; Cropper EC
    J Neurophysiol; 1998 Oct; 80(4):1609-22. PubMed ID: 9772225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A proprioceptive role for an exteroceptive mechanoafferent neuron in Aplysia.
    Borovikov D; Evans CG; Jing J; Rosen SC; Cropper EC
    J Neurosci; 2000 Mar; 20(5):1990-2002. PubMed ID: 10684900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral CBM1 neuron contributes to synaptic modulation appearing during rejection of seaweed in Aplysia kurodai.
    Narusuye K; Nagahama T
    J Neurophysiol; 2002 Nov; 88(5):2778-95. PubMed ID: 12424312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endogenous motor neuron properties contribute to a program-specific phase of activity in the multifunctional feeding central pattern generator of Aplysia.
    Serrano GE; Martínez-Rubio C; Miller MW
    J Neurophysiol; 2007 Jul; 98(1):29-42. PubMed ID: 17392419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid dopaminergic signaling by interneurons that contain markers for catecholamines and GABA in the feeding circuitry of Aplysia.
    Díaz-Ríos M; Miller MW
    J Neurophysiol; 2005 Apr; 93(4):2142-56. PubMed ID: 15537820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective spike propagation in the central processes of an invertebrate neuron.
    Evans CG; Kang T; Cropper EC
    J Neurophysiol; 2008 Nov; 100(5):2940-7. PubMed ID: 18815343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of afferent transmission in the feeding circuitry of Aplysia.
    Cropper EC; Evans CG; Jing J; Klein A; Proekt A; Romero A; Rosen SC
    Acta Biol Hung; 2004; 55(1-4):211-20. PubMed ID: 15270237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. B64, a newly identified central pattern generator element producing a phase switch from protraction to retraction in buccal motor programs of Aplysia californica.
    Hurwitz I; Susswein AJ
    J Neurophysiol; 1996 Apr; 75(4):1327-44. PubMed ID: 8727381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two distinct mechanisms mediate potentiating effects of depolarization on synaptic transmission.
    Ludwar BCh; Evans CG; Jing J; Cropper EC
    J Neurophysiol; 2009 Sep; 102(3):1976-83. PubMed ID: 19605611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplitude and frequency dependence of spike timing: implications for dynamic regulation.
    Hunter JD; Milton JG
    J Neurophysiol; 2003 Jul; 90(1):387-94. PubMed ID: 12634276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamate is the fast excitatory neurotransmitter of small cardioactive peptide-containing Aplysia radula mechanoafferent neuron B21.
    Klein AN; Weiss KR; Cropper EC
    Neurosci Lett; 2000 Jul; 289(1):37-40. PubMed ID: 10899403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different roles of neurons B63 and B34 that are active during the protraction phase of buccal motor programs in Aplysia californica.
    Hurwitz I; Kupfermann I; Susswein AJ
    J Neurophysiol; 1997 Sep; 78(3):1305-19. PubMed ID: 9310422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Desensitization of postsynaptic glutamate receptors contributes to high-frequency homosynaptic depression of aplysia sensorimotor connections.
    Antzoulatos EG; Cleary LJ; Eskin A; Baxter DA; Byrne JH
    Learn Mem; 2003; 10(5):309-13. PubMed ID: 14557602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.