These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 14508677)
1. On-line estimation of sugar concentration for control of fed-batch fermentation of lignocellulosic hydrolyzates by Saccharomyces cerevisiae. Nilsson A; Taherzadeh MJ; Lidén G Bioprocess Biosyst Eng; 2002 Sep; 25(3):183-91. PubMed ID: 14508677 [TBL] [Abstract][Full Text] [Related]
2. Fed-batch cultivation of Saccharomyces cerevisiae on lignocellulosic hydrolyzate. Petersson A; Lidén G Biotechnol Lett; 2007 Feb; 29(2):219-25. PubMed ID: 17091372 [TBL] [Abstract][Full Text] [Related]
3. Use of dynamic step response for control of fed-batch conversion of lignocellulosic hydrolyzates to ethanol. Nilsson A; Taherzadeh MJ; Lidén G J Biotechnol; 2001 Jul; 89(1):41-53. PubMed ID: 11472798 [TBL] [Abstract][Full Text] [Related]
4. Development of a fed-batch cultivation strategy for the enhanced production and secretion of cutinase by a recombinant Saccharomyces cerevisiae SU50 strain. Calado CR; Almeida C; Cabral JM; Fonseca LP J Biosci Bioeng; 2003; 96(2):141-8. PubMed ID: 16233499 [TBL] [Abstract][Full Text] [Related]
5. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Najafpour G; Younesi H; Syahidah Ku Ismail K Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158 [TBL] [Abstract][Full Text] [Related]
6. [Continuous ethanol fermentation using self-flocculating yeast strain and bioreactor system composed of multi-stage tanks in series]. Xu TJ; Zhao XQ; Zhou YC; Bai FW Sheng Wu Gong Cheng Xue Bao; 2005 Jan; 21(1):113-7. PubMed ID: 15859339 [TBL] [Abstract][Full Text] [Related]
7. Controlled pilot development unit-scale fed-batch cultivation of yeast on spruce hydrolysates. Rudolf A; Lequeux G; Lidén G Biotechnol Prog; 2007; 23(2):351-8. PubMed ID: 17330957 [TBL] [Abstract][Full Text] [Related]
9. Continuous fermentation of feed streams containing D-glucose and D-xylose in a two-stage process utilizing immobilized Saccharomyces cerevisiae and Pachysolen tannophilus. Slininger PJ; Bothast RJ Biotechnol Bioeng; 1988 Oct; 32(9):1104-12. PubMed ID: 18587829 [TBL] [Abstract][Full Text] [Related]
10. Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Ezeji TC; Qureshi N; Blaschek HP Appl Microbiol Biotechnol; 2004 Feb; 63(6):653-8. PubMed ID: 12910325 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of batch ethanol fermentation of cheese-whey powder (CWP) solution as function of substrate and yeast concentrations. Ozmihci S; Kargi F Bioresour Technol; 2007 Nov; 98(16):2978-84. PubMed ID: 17118651 [TBL] [Abstract][Full Text] [Related]
12. The performance of serial bioreactors in rapid continuous production of ethanol from dilute-acid hydrolyzates using immobilized cells. Purwadi R; Taherzadeh MJ Bioresour Technol; 2008 May; 99(7):2226-33. PubMed ID: 17596937 [TBL] [Abstract][Full Text] [Related]
13. Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture. Hjersted JL; Henson MA; Mahadevan R Biotechnol Bioeng; 2007 Aug; 97(5):1190-204. PubMed ID: 17243146 [TBL] [Abstract][Full Text] [Related]
14. In situ detoxification and continuous cultivation of dilute-acid hydrolyzate to ethanol by encapsulated S. cerevisiae. Talebnia F; Taherzadeh MJ J Biotechnol; 2006 Sep; 125(3):377-84. PubMed ID: 16621080 [TBL] [Abstract][Full Text] [Related]
15. Two-dimensional fluorescence spectroscopy: a novel approach for controlling fed-batch cultivations. Hantelmann K; Kollecker M; Hüll D; Hitzmann B; Scheper T J Biotechnol; 2006 Feb; 121(3):410-7. PubMed ID: 16125265 [TBL] [Abstract][Full Text] [Related]
16. Studies on growth and metabolism of Oenococcus oeni on sugars and sugar mixtures. Zhang DS; Lovitt RW J Appl Microbiol; 2005; 99(3):565-72. PubMed ID: 16108798 [TBL] [Abstract][Full Text] [Related]
17. Enzymatic hydrolysis and fermentation of pretreated cashew apple bagasse with alkali and diluted sulfuric Acid for bioethanol production. Rocha MV; Rodrigues TH; de Macedo GR; Gonçalves LR Appl Biochem Biotechnol; 2009 May; 155(1-3):407-17. PubMed ID: 19031051 [TBL] [Abstract][Full Text] [Related]
18. Fermentative capacity in high-cell-density fed-batch cultures of baker's yeast. van Hoek P; de Hulster E; van Dijken JP; Pronk JT Biotechnol Bioeng; 2000 Jun; 68(5):517-23. PubMed ID: 10797237 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production. Li H; Kim NJ; Jiang M; Kang JW; Chang HN Bioresour Technol; 2009 Jul; 100(13):3245-51. PubMed ID: 19289273 [TBL] [Abstract][Full Text] [Related]
20. Advanced control of glutathione fermentation process. Sakato K; Tanaka H Biotechnol Bioeng; 1992 Oct; 40(8):904-12. PubMed ID: 18601197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]